Experimental and Numerical Study on the Composite Column Behavior: Loess Soil Reinforced by Concrete-Stone Column

Mahmood A. Salam, Qiyao Wang, Jinbo Huang

Abstract


Stone columns are an effective approach to improving the bearing capacity of weak soils, which has led to increased interest in the improved soil method being further developed and expanded. In addition, enhancing the bearing capacity of stone columns has recently received great attention. This paper studies the effects of embedded concrete parts on the stone columns' bearing capacity and bulging failure. Moreover, arranging solutions to the problem of bulging failure and reduced bearing capacity of stone columns and understanding the stone columns' failure after reinforcement by comparing the results. Stone columns are either embedded in a solid concrete part or unreinforced were examined using large-scale laboratory experiments, and numerical simulation was performed using ABAQUS. The models test with a scale factor of 1:7 was employed. The results demonstrated that using a concrete part on the top of the stone column greatly increases its bearing capacity and the efficiency of the surrounding soil. Concrete-stone columns (CSCs) show stress concentration ratio (n) enhancement and significant resistance to bulging failure deformation. The concrete-stone column shows an enhancement related to increasing the concrete part length; also, the CSCs stiffness increases the surrounding loess soil capacity. The horizontal stresses of CSCs demonstrate the type of column failure behavior; the column may fail due to shear stress in a long concrete part case.

 

Doi: 10.28991/CEJ-2022-08-10-01

Full Text: PDF


Keywords


Stone Column; Concrete-Stone Column; Bulging; Stress Concentration Ratio; Loess Soil; ABAQUS.

References


Madhav, M. R., & Vitkar, P. P. (1978). Strip Footing on Weak Clay Stabilized with a Granular Trench or Pile. Canadian Geotechnical Journal, 15(4), 605–609. doi:10.1139/t78-066.

Wong, H. Y. (1975). Vibroflotation-its effect on weak cohesive soils. Civil Engineering (London), 82, 44-76.

Barksdale, R. D., & Bachus, R. C. (1983). Design and construction of stone columns. Report No. FHWA/RD-83/026;SCEGIT-83-104, Office of Engineering & Highway Operations Research and Development, Federal Highway Administration, Washington, United States.

Hughes, J. M. O., Withers, N. J., & Greenwood, D. A. (1975). A Field Trial of the Reinforcing Effect of a Stone Column in Soil. Geotechnique, 25(1), 31–44. doi:10.1680/geot.1975.25.1.31.

Greenwood, D. A. (1970). Mechanical improvement of soils below ground surface. Institution of Civil Engineers, London, United Kingdom.

Vesić, A. S. (1972). Expansion of Cavities in Infinite Soil Mass. Journal of the Soil Mechanics and Foundations Division, 98(3), 265–290. doi:10.1061/jsfeaq.0001740.

Hughes, J. M. O., & Withers, N. J. (1974). Reinforcing of soft cohesive soils with stone columns. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(11), A234. doi:10.1016/0148-9062(74)90643-3.

Datye, K. R., & Nagaraju, S. S. (1975). Installation and testing of rammed stone columns. Proceedings of IGS specialty session, 5th Asian Regional Conference on Soil Mechanic and Foundation Engineering, 101-104, Bangalor, India.

Madhav, M. R., Iyengar, N. G. R., Vitkar, R. P., & Nandia, A. (1979). Increased bearing capacity and reduced settlements due to inclusions in soil. Proceedings of International Conference on Soil Reinforcement, Reinforced and other Techniques, 239-333, 20-22 March, 1979, Paris, France.

Sakr, M., El-Sawwaf, M., Azzam, W., & El-Disouky, E. (2021). Improvement of shear strength and compressibility of soft clay stabilized with lime columns. Innovative Infrastructure Solutions, 6(3), 1-20. doi:10.1007/s41062-021-00509-w.

Hughes, J. M. O., Withers, N. J., & Greenwood, D. A. (1975). A field trial of the reinforcing effect of a stone column in soil. Geotechnique, 25(1), 31-44. doi:10.1680/gtbdc.00247.0003.

Ekeleme, A. C., Ekwueme, B. N., & Agunwamba, J. C. (2021). Modeling Contaminant Transport of Nitrate in Soil Column. Emerging Science Journal, 5(4), 471-485. doi:10.28991/esj-2021-01290.

Shivashankar, R., Babu, M. R. D., Nayak, S., & Rajathkumar, V. (2011). Experimental Studies on Behaviour of Stone Columns in Layered Soils. Geotechnical and Geological Engineering, 29(5), 749–757. doi:10.1007/s10706-011-9414-0.

Das, P., & Pal, S. K. (2013). A study of the behavior of stone column in local soft and loose layered soil. Electronic Journal of Geotechnical Engineering, 18, 1777–1786.

Han, J. (2015). Recent research and development of ground column technologies. Proceedings of the Institution of Civil Engineers: Ground Improvement, 168(4), 246–264. doi:10.1680/grim.13.00016.

Dheerendra Babu, M. R., Nayak, S., & Shivashankar, R. (2013). A Critical Review of Construction, Analysis and Behaviour of Stone Columns. Geotechnical and Geological Engineering, 31(1), 1–22. doi:10.1007/s10706-012-9555-9.

Sharma, R. S., Kumar, B. R. P., & Nagendra, G. (2004). Compressive load response of granular piles reinforced with geogrids. Canadian Geotechnical Journal, 41(1), 187–192. doi:10.1139/t03-075.

Rao, B. G., & Bhandari, R. K. (1980, May). Skirting—a new concept in design of heavy storage tank foundation. Proceedings of the 6th South-East Conference on soil Engineering, 283-300, 23 May, 1980, Taipei, Taiwan.

Juran, I., & Riccobono, O. (1991). Reinforcing soft soils with artificially cemented compacted-sand columns. Journal of geotechnical engineering, 117(7), 1042-1060. doi:10.1061/(ASCE)0733-9410(1991)117:7(1042).

Black, J. A., Sivakumar, V., Madhav, M. R., & Hamill, G. A. (2007). Reinforced Stone Columns in Weak Deposits: Laboratory Model Study. Journal of Geotechnical and Geoenvironmental Engineering, 133(9), 1154–1161. doi:10.1061/(asce)1090-0241(2007)133:9(1154).

Mckenna, J. M., Eyre, W. A., & Wolstenholme, D. R. (1976). Performance of an embankment supported by stone columns in soft ground. Ground Treatment by Deep Compaction, 25(1), 52–59. doi:10.1680/gtbdc.00247.0005.

Moseley, M. P., & Kirsch, K. (2004). Ground improvement. CRC Press, Boca Raton, United States. doi:10.2472/jsms.42.1023.

Zheng, G., Liu, S., & Chen, R. (2009). State of Advancement of Column-Type Reinforcement Element and Its Application in China. Advances in Ground Improvement. doi:10.1061/41025(338)2.

Chen, J. S., Tang, T. Z., Zhao, W. B., & Yu, J. (2007). Field tests on composite foundation with concrete-cored sand-gravel piles. Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 29(7), 957–962.

Meyerhof, G. G., & Sastry, V. V. R. N. (1978). Bearing Capacity of Piles in Layered Soils - 2. Sand Overlying Clay. Canadian Geotechnical Journal, 15(2), 183–189. doi:10.1139/t78-018.

Selig, E. T., & McKee, K. E. (1961). Static and Dynamic Behavior of Small Footings. Journal of the Soil Mechanics and Foundations Division, 87(6), 29–45. doi:10.1061/jsfeaq.0000378.

Latha, G. M., & Somwanshi, A. (2009). Bearing capacity of square footings on geosynthetic reinforced sand. Geotextiles and Geomembranes, 27(4), 281–294. doi:10.1016/j.geotexmem.2009.02.001.

Verghese Chummar, A. (1972). Bearing Capacity Theory from Experimental Results. Journal of the Soil Mechanics and Foundations Division, 98(12), 1311–1324. doi:10.1061/jsfeaq.0001816.

Nayak, N. V. (1983). Recent advances in ground improvements by stone column. Proceedings of Indian Geotechnical Conference, 21-24 December, 1983, Madras, India.

Fattah, M. Y., Shlash, K. T., & Al-Waily, M. J. M. (2011). Stress concentration ratio of model stone columns in soft clays. Geotechnical Testing Journal, 34(1), 50–60. doi:10.1520/GTJ103060.

Bowles, J. E. (1996). Foundation Analysis and Design, The McGraw-Hill Companies Inc., Singapore.

Dhani, N., Gasruddin, A., Hartini, H., & Baride, L. (2021). Unconfined compressive strength characteristics of over boulder Asbuton and zeolite stabilized soft soil. Civil Engineering Journal, 7(1), 40-48. doi:10.28991/cej-2021-03091635.

Nazariafshar, J., Mehrannia, N., Kalantary, F., & Ganjian, N. (2017). Bearing Capacity of Group of Stone Columns with Granular Blankets. International Journal of Civil Engineering, 17(2), 253–263. doi:10.1007/s40999-017-0271-y.

Mohanty, P., & Samanta, M. (2015). Experimental and Numerical Studies on Response of the Stone Column in Layered Soil. International Journal of Geosynthetics and Ground Engineering, 1(3), 27. doi:10.1007/s40891-015-0029-z.

Castro, J. (2017). Groups of encased stone columns: Influence of column length and arrangement. Geotextiles and Geomembranes, 45(2), 68–80. doi:10.1016/j.geotexmem.2016.12.001.

Ambily, A. P., & Gandhi, S. R. (2007). Behavior of Stone Columns Based on Experimental and FEM Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 405–415. doi:10.1061/(asce)1090-0241(2007)133:4(405).

Shahu, J. T., & Reddy, Y. R. (2011). Clayey Soil Reinforced with Stone Column Group: Model Tests and Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 137(12), 1265–1274. doi:10.1061/(asce)gt.1943-5606.0000552.

Ghazavi, M., & Nazari Afshar, J. (2013). Bearing capacity of geosynthetic encased stone columns. Geotextiles and Geomembranes, 38, 26–36. doi:10.1016/j.geotexmem.2013.04.003.

Lee, D., Yoo, C., & Park, S. (2007). Model tests for analysis of load carrying capacity of geogrid encased stone column. The Seventeenth International Offshore and Polar Engineering Conference, 1-6 July, 2007, Lisbon, Portugal.

Brooker, E. W., & Ireland, H. O. (1965). Earth Pressures at Rest Related to Stress History. Canadian Geotechnical Journal, 2(1), 1–15. doi:10.1139/t65-001.

Sivakumar, V., & Black, J. (2007). A laboratory model study of the performance of vibrated stone columns in soft clay. 17th International Conference on Soil Mechanics and Foundation Engineering, Madrid, Spain.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-10-01

Refbacks





Copyright (c) 2022 Mahmood Abdulrahman Hassan Salam, Jinbo Huang, Qiyao Wang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message