Maximum Strain Effect and Secant Modulus Variation of Hemic Peat Soil at large Deformation due to Cyclic Loading

Habib Musa Mohamad, Adnan Zainorabidin, Mohamad Ibrahim Mohamad

Abstract


This study presents the findings obtained in post-cyclic behaviour and degradation of shear strength from the static triaxial test, cyclic triaxial test and post-cyclic monotonic triaxial test to study the dynamic loading relationships with the degradation of shear strength after cyclic loading to the maximum strain effect due for Hemic peat soil and aim of this research was to assess the post-cyclic loading condition that brought to the understanding of secant modulus by using dynamic triaxial apparatus. It begins with a visual inspection of fibre characteristics. This is followed by an analysis of static, cyclic, and post-cyclic loading with stress-strain behaviour. Shear strength decreased and notched lower strength than its initial strength. As a matter of fact, PNpt-25 kPa from 1, 2, and 3 Hz are accumulated in the adjacent maximum strain. With regards to this maximum strain, the undrained shear strength ratio shows sequent decreases from higher to lower frequency applied. For instance, PNpt-25 kPa-1Hz to PNpt-25 kPa-3Hz recorded 1.16 to 1.13 undrained shear strength ratios, respectively. The secant modulus (Esec) for all specimens reflects decrement. The secant modulus for BSpt at an effective stress of 100 kPa in static monotonic is about 18.74 MPa, while in post-cyclic, the secant modulus expanded to 19.630 MPa cyclically loaded with 1 Hz. Unfortunately, the secant modulus returned to decline position when higher frequency applied at 2 Hz, where the secant modulus is about 12.781 MPa and continues to decline with 3 Hz at 7.492 MPa.

 

Doi: 10.28991/CEJ-2022-08-10-015

Full Text: PDF


Keywords


Strain; Post-cyclic; Secant Modulus; Dynamic; Shear Strength; Peat Soil.

References


Jacobsen, N. G., van Gent, M. R. A., & Fredsøe, J. (2017). Numerical modelling of the erosion and deposition of sand inside a filter layer. Coastal Engineering, 120, 47–63. doi:10.1016/j.coastaleng.2016.09.003.

Daniel-Mkpume, C. C., Okonkwo, E. G., Aigbodion, V. S., Offor, P. O., & Nnakwo, K. C. (2019). Silica sand modified aluminium composite: an empirical study of the physical, mechanical and morphological properties. Materials Research Express, 6(7), 076539. doi:10.1088/2053-1591/ab14c6.

O’Kelly, B. C., & Zhang, L. (2013). Consolidated-drained triaxial compression testing of peat. Geotechnical Testing Journal, 36(3). doi:10.1520/GTJ20120053.

Mohamad, H. M., & Zainorabidin, A. (2021). Young’S Modulus of Peat Soil under Cyclic Loading. International Journal of GEOMATE, 21(84), 177–187. doi:10.21660/2021.84.j2164.

Pillai, R. J., Nazeeh, K. M., & Robinson, R. G. (2014). Post-Cyclic Behaviour of Clayey Soil. Indian Geotechnical Journal, 44(1), 39–48. doi:10.1007/s40098-013-0042-x.

Wang, Z., Li, M., Shen, L., & Wang, J. (2022). Incorporating clay as a natural and enviro-friendly partial replacement for cement to reduce carbon emissions in peat stabilisation: An experimental investigation. Construction and Building Materials, 353, 128901. doi:10.1016/j.conbuildmat.2022.128901.

Sitharam, T., Govinda Raju, L., Murthi, S., & B. (2004). Cyclic and monotonic undrained shear response of silty sand from Bhuj region in India. ISET Journal of Earthquake Technology, 41(2), 249–260.

Sulaiman, M. S., Mohamad, H. M., & Suhaimi, A. A. (2022). A Study on Linear Shrinkage Behavior of Peat Soil Stabilized with Eco-Processed Pozzolan (EPP). Civil Engineering Journal, 8(6), 1157-1166. doi:10.28991/CEJ-2022-08-06-05.

Siang, A. L. M. S. (2014). Development of a New Sand Particle Clustering Method with Respect to its Static and Dyanmic Morphological and Structural Characteristics. Ph.D. Thesis, University Tun Hussein Onn Malaysia (UTHM), Johor Bahru, Malaysia.

Yokota, K., Imai, T., & Konno, M. (1981). Dynamic deformation characteristics of soils determined by laboratory tests. OYO Tec. Rep, 3, 13-37.

Kishida, T., Boulanger, R. W., Abrahamson, N. A., Wehling, T. M., & Driller, M. W. (2009). Regression Models for Dynamic Properties of Highly Organic Soils. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 533–543. doi:10.1061/(asce)1090-0241(2009)135:4(533).

Kramer, S. L. (2000). Dynamic Response of Mercer Slough Peat. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 504–510. doi:10.1061/(asce)1090-0241(2000)126:6(504).

Boulanger, R. W., Arulnathan, R., Harder, L. F., Torres, R. A., & Driller, M. W. (1998). Dynamic Properties of Sherman Island Peat. Journal of Geotechnical and Geoenvironmental Engineering, 124(1), 12–20. doi:10.1061/(asce)1090-0241(1998)124:1(12).

Seed, H. B., & Chan, C. K. (1966). Clay Strength under Earthquake Loading Conditions. Journal of the Soil Mechanics and Foundations Division, 92(2), 53–78. doi:10.1061/jsfeaq.0000867.

Dabdab, A. J. (2019). The Behavior of Clay Soil under the Effect of Cyclic Loading. Journal of Geotechnical Studies, 4(1), 12–18. doi:10.5281/zenodo.2551116.

Erken A., & Ülker, M.B.C. (2008). The Post-Cyclic Shear Strength of Fine-Grained Soils. The 14th World Conference on Earthquake Engineering, 12-17 October, 2008, Beijing, China.

Wang, S. (2011). Postcyclic behavior of low-plasticity silt. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, United States.

Yasuhara, K., Hirao, K., & FL Hyde, A. (1992). Effects of cyclic loading on undrained strength and compressibility of clay. Soils and Foundations, 32(1), 100–116. doi:10.3208/sandf1972.32.100.

Chen, C., Xu, G., Zhou, Z., Kong, L., Zhang, X., & Yin, S. (2020). Undrained dynamic behaviour of peaty organic soil under long-term cyclic loading, Part II: Constitutive model and simulation. Soil Dynamics and Earthquake Engineering, 129, 279–291. doi:10.1016/j.soildyn.2019.01.039.

Sarkar, G., & Sadrekarimi, A. (2022). Cyclic shearing behavior and dynamic characteristics of a fibrous peat. Canadian Geotechnical Journal, 59(5), 688–701. doi:10.1139/cgj-2020-0516

Zhang, J., Sun, Y., & Cao, J. (2020). Experimental Study on the Deformation and Strength Characteristics of Saturated Clay under Cyclic Loading. Advances in Civil Engineering, 2020, 9. doi:10.1155/2020/7456596.

Zhu, Z., Zhang, C., Wang, J., Zhang, P., & Zhu, D. (2021). Cyclic Loading Test for the Small-Strain Shear Modulus of Saturated Soft Clay and Its Failure Mechanism. Geofluids, 2021, 13. doi:10.1155/2021/2083682.

Moghal, A. A. B., & Vydehi, K. V. (2021). State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innovative Infrastructure Solutions, 6(2), 1-14. doi:10.1007/s41062-021-00462-8.

Liu, H., Du, X., Li, Y., Han, X., Li, B., Zhang, X., ... & Liang, W. (2022). Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. Journal of Cleaner Production, 347, 131323. doi:10.1016/j.jclepro.2022.131323.

Boulanger, R. W., & Idriss, I. M. (2007). Evaluation of Cyclic Softening in Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 641–652. doi:10.1061/(asce)1090-0241(2007)133:6(641).

Wu, J. D., Guo, L. P., & Qin, Y. Y. (2021). Preparation and characterization of ultra-high-strength and ultra-high-ductility cementitious composites incorporating waste clay brick powder. Journal of Cleaner Production, 312, 127813. doi:10.1016/j.jclepro.2021.127813.

Talib, F. M., Mohamad, H. M., & Mustafa, M. N. (2021). Peat Soil Improvement with Bamboo Reinforcement Technology: a Review. International Journal of GEOMATE, 21(88), 75–85. doi:10.21660/2021.88.j2259.

Shafiee, A., Scott, J. B., & Jonathan, P. S. (2013). Laboratory Evaluation of Seismic Failure Mechanisms of Levees on Peat. Ph.D. Thesis, University of California, Los Angeles, United States.

Samir El-Kady, M., & ElMesmary, M. A. (2018). Cyclic strengths for high density soils related to pore water pressure. Innovative Infrastructure Solutions, 3(1), 1-10. doi:10.1007/s41062-018-0142-7.

Zainorabidin, A., & Mohamad, H. M. (2015). Pre- and post-cyclic behavior on monotonic shear strength of Penor peat. Electronic Journal of Geotechnical Engineering, 20(16), 6927–6935.

Das, B. M., & Sobhan, KH. (2011). Principles of geotechnical engineering (9th Ed.). Cengage Learning, Boston, United States.

Karaca, H., Depci, T., Karta, M., & Coskun, M. A. (2016). Liquefaction Potential of Adiyaman Peat. IOP Conference Series: Earth and Environmental Science, 44, 052050. doi:10.1088/1755-1315/44/5/052050.

Zainorabidin, A., & Mohamad, H. M. (2016). A geotechnical exploration of Sabah peat soil: Engineering classifications and field surveys. Electronic Journal of Geotechnical Engineering, 21(20), 6671–6687.

Zergoun, M., & Vaid, Y. P. (1994). Effective stress response of clay to undrained cyclic loading. Canadian Geotechnical Journal, 31(5), 714–727. doi:10.1139/t94-083.

Wichtmann, T., Andersen, K. H., Sjursen, M. A., & Berre, T. (2013). Cyclic tests on high-quality undisturbed block samples of soft marine Norwegian clay. Canadian Geotechnical Journal, 50(4), 400–412. doi:10.1139/cgj-2011-0390.

Mohamad, H. M., Zainorabidin, A., Musta, B., Mustafa, M. N., Amaludin, A. E., & Abdurahman, M. N. (2021). Compressibility behaviour and engineering properties of north borneo peat soil. Eurasian Journal of Soil Science, 10(3), 259–268. doi:10.18393/ejss.930620.

Zainorabidin, A., & Mohamad, H. M. (2016). Preliminary peat surveys in ecoregion delineation of North Borneo: Engineering perspective. Electronic Journal of Geotechnical Engineering, 21(12), 4485–4493.

Basevich, V. F. (2022). Heterogeneity of Podzolic Soils: Genesis, Methodological and Methodical Aspects of Study. Moscow University Soil Science Bulletin, 77(3), 128-136. doi:10.3103/S0147687422030024.

BS 1377-2:2022. (2022). Methods of test for soils for civil engineering purposes-Classification tests and determination of geotechnical properties. British Standards Institution (BSI), London, United Kingdom.

ASTM D1997-91. (2008). Standard Test Method for Laboratory Determination of the Fibre Content of Peat Samples by Dry Mass. ASTM International, Pennsylvania, United States. doi:10.1520/D1997-91R08.

Huat, B. B. (2006). Deformation and shear strength characteristics of some tropical peat and organic soils. Pertanika Journal of Science & Technology, 14(1-2), 61-74.

Zolkefle, S. N. A. (2014). The dynamic characteristic of Southwest Johor peat under different frequencies. Degree of Master in Civil Engineering Thesis, University Tun Hussein Onn Malaysia (UTHM), Johor Bahru, Malaysia.

Kolay, P. K., Sii, H. Y., & Taib, S. N. L. (2011). Tropical peat soil stabilization using class F pond ash from coal fired power plant. Kolay, P. K., Sii, H. Y., & Taib, S. N. L. (2011). Tropical peat soil stabilization using class F pond ash from coal fired power plant. International Journal of Civil and Environmental Engineering, 3(2), 79-83.

Diaz-Rodriguez, J. A., Moreno, P., & Salinas, G. (2000). Undrained shear behavior of Mexico City sediments during and after cyclic loading. 12th World Conference on Earthquake Engineering, 1652-1660, 30 January 4 February, 2000, Auckland, New Zealand.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-10-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 HABIB MUSA BIN MOHAMAD

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message