Modeling Sustainable Traffic Behavior: Avoiding Congestion at a Stationary Bottleneck

Imran Badshah, Zawar H. Khan, T. Aaron Gulliver, Khurram S. Khattak, Syed Saad


Sustainable traffic behaviour is increasing in importance as traffic volume rises due to population growth. In this paper, a model for traffic flow at a stationary bottleneck is developed to determine the parameters that cause congestion. Towards this goal, traffic density, speed, and delay were acquired during peak and off-peak periods in the morning and afternoon at a stationary bottleneck in Peshawar, KPK, Pakistan. The morning and afternoon peak periods have high densities, low speeds, and considerable delays. Regression models are developed using this data. These results indicate that there is a linear relationship between density and time at the stationary bottleneck and a negative linear relationship between density and speed. Thus, an increase in density increases the time delay and reduces the speed. I comprehensive traffic delay model is characterized by a stationary bottleneck. The Kolmogorov-Smirnov (KS) test and P-values were used to identify the best-fit distribution for speed and density. The binomial and generalized extreme values are considered the best fits for density and speed. The results presented can be used to develop accurate simulation models for stationary bottlenecks to reduce congestion.


Doi: 10.28991/CEJ-2022-08-11-02

Full Text: PDF


Stationary Bottleneck; Target Lane; Traffic Model; Lane Changes; Traffic Congestion; Delay.


Ali, M. S., Adnan, M., Noman, S. M., & Baqueri, S. F. A. (2014). Estimation of traffic congestion cost - A case study of a major arterial in Karachi. Procedia Engineering, 77, 37–44. doi:10.1016/j.proeng.2014.07.030.

de Luca, S., Pace, R. Di, Memoli, S., & Pariota, L. (2020). Sustainable traffic management in an urban area: An integrated framework for real-time traffic control and route guidance design. Sustainability (Switzerland), 12(2). doi:10.3390/su12020726.

Yu, C., Zhang, J., Yao, D., Zhang, R., & Jin, H. (2016). Speed-Density Model of Interrupted Traffic Flow Based on Coil Data. Mobile Information Systems, 2016. doi:10.1155/2016/7968108.

Kamińska, J. A., & Chalfen, M. (2017). The effect of distances between vehicles on time and speed in simulated traffic flow. Roads and Bridges - Drogi i Mosty, 16(3), 163–176. doi:10.7409/rabdim.017.011.

Bejerano, Y., & Cidon, I. (n.d.). Efficient location management based on moving location areas. Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213). doi:10.1109/infcom.2001.916681.

Haghani, A., Hamedi, M., Sadabadi, K. F., Young, S., & Tarnoff, P. (2010). Data collection of freeway travel time ground truth with Bluetooth sensors. Transportation Research Record, 2160(2160), 60–68. doi:10.3141/2160-07.

Wei, X., Xu, C., Wang, W., Yang, M., & Ren, X. (2017). Evaluation of average travel delay caused by moving bottlenecks on highways. PLoS ONE, 12(8). doi:10.1371/journal.pone.0183442.

Čičić, M., Pasquale, C., Siri, S., Sacone, S., & Johansson, K. H. (2022). Platoon-actuated variable area mainstream traffic control for bottleneck decongestion. European Journal of Control, 100687. doi:10.1016/j.ejcon.2022.100687.

Hsu, C., Lin, ZiChiou, Y., & Lan, L. (2007). Exploring traffic features with stationary and moving bottlenecks using refined cellular automata. Journal of the Eastern Asia Society for Transportation Studies, 7(1992), 2502–2516. doi:10.11175/easts.7.2502.

Newell, G. F. (1998). A moving bottleneck. Transportation Research Part B: Methodological, 32B(8), 531–537. doi:10.1016/s0191-2615(98)00007-1.

Mauro, R., & Pompigna, A. (2022). A Statistically Based Model for the Characterization of Vehicle Interactions and Vehicle Platoons Formation on Two-Lane Roads. Sustainability (Switzerland), 14(8). doi:10.3390/su14084714.

Mahona, J. N. P., Mhilu, C. F., Kihedu, J., & Bwire, H. (2020). Effects of static bottlenecks on traffic flow in urban road network. International Journal of Engineering, Science and Technology, 12(3), 1–15. doi:10.4314/ijest.v12i3.1.

Badshah, I., Khan, Z., Saad, S., Khan, F., Aslam, S., & Khattak, K. S. (2020). A Videogrammetric Analysis of On Peak/Off Peak Traffic Density: A Case of Board Bazaar Peshawar. Pakistan Journal of Engineering and Technology, 3(03), 38-45. doi:10.51846/vol3iss03pp38-45.

Jula, H., Kosmatopoulos, E. B., & Ioannou, P. A. (2000). Collision avoidance analysis for lane changing and merging. IEEE Transactions on Vehicular Technology, 49(6), 2295–2308. doi:10.1109/25.901899.

Ako, T., & Yusuf, I. T. (2016). Time headway and vehicle speed studies of a road section in ilorin, nigeria. USEP: Journal of Research Information in Civil Engineering, 13(3), 1031-1041.

G, R., Devika, K. B., Menon, P. P., & Subramanian, S. C. (2022). An Adaptive Time-Headway Policy for Lower Energy Consumption in Autonomous Vehicle Platoons. European Control Conference (ECC). doi:10.23919/ecc55457.2022.9838152.

Bhat, C. R. (1998). Analysis of travel mode and departure time choice for urban shopping trips. Transportation Research Part B: Methodological, 32B(6), 361–371. doi:10.1016/s0191-2615(98)00004-6.

Yang, Z., Zhang, Y., Zhu, R., Ye, X., & Jiang, X. (2015). Impacts of pedestrians on capacity and delay of major street through traffic at two-way stop-controlled intersections. Mathematical Problems in Engineering, 2015. doi:10.1155/2015/383121.

Yang, Z., Ma, J., Wang, B., & Yan, X. (2022). Application of Pedestrian Upstream Detection Strategy in a Mixed Flow Traffic Circumstance. Promet - Traffic - Traffico, 34(2), 271–283. doi:10.7307/ptt.v34i2.3956.

Bivina, G. R., Landge, V., & Kumar, V. S. S. (2016). Socio Economic Valuation of Traffic Delays. Transportation Research Procedia, 17, 513–520. doi:10.1016/j.trpro.2016.11.104.

Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14(1), 18–30. doi:10.1046/j.1523-1739.2000.99084.x.

AlKheder, S. (2021). Promoting public transport as a strategy to reduce GHG emissions from private vehicles in Kuwait. Environmental Challenges, 3. doi:10.1016/j.envc.2021.100075.

Keyvan-Ekbatani, M., Papageorgiou, M., & Knoop, V. L. (2015). Controller Design for Gating Traffic Control in Presence of Time-delay in Urban Road Networks. Transportation Research Procedia, 7, 651–668. doi:10.1016/j.trpro.2015.06.034.

Ratrout, N. T., & Rahman, S. M. (2009). A comparative analysis of currently used microscopic and macroscopic traffic simulation software. The Arabian Journal for Science and Engineering, 34(1B), 121-133.

Khan, Z. H., & Gulliver, T. A. (2018). A macroscopic traffic model for traffic flow harmonization. European Transport Research Review, 10(2). doi:10.1186/s12544-018-0291-y.

Maroto, J., Delso, E., Félez, J., & Cabanellas, J. M. (2006). Real-time traffic simulation with a microscopic model. IEEE Transactions on Intelligent Transportation Systems, 7(4), 513–526. doi:10.1109/TITS.2006.883937.

Bowman, C. N., & Miller, J. A. (2016). Modeling traffic flow using simulation and Big Data analytics. 2016 Winter Simulation Conference (WSC). doi:10.1109/wsc.2016.7822177.

van der Heiden, R. M. A., Janssen, C. P., Donker, S. F., & Merkx, C. L. (2019). Visual in-car warnings: How fast do drivers respond? Transportation Research Part F: Traffic Psychology and Behaviour, 65, 748–759. doi:10.1016/j.trf.2018.02.024.

Zhou, M., Qu, X., & Jin, S. (2017). On the Impact of Cooperative Autonomous Vehicles in Improving Freeway Merging: A Modified Intelligent Driver Model-Based Approach. IEEE Transactions on Intelligent Transportation Systems, 18(6), 1422–1428. doi:10.1109/TITS.2016.2606492.

Gundana, D., Dollar, R. A., & Vahidi, A. (2018). To Merge Early or Late: Analysis of Traffic Flow and Energy Impact in a Reduced Lane Scenario. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). doi:10.1109/itsc.2018.8569407.

Yang, L., Li, X., Guan, W., Zhang, H. M., & Fan, L. (2018). Effect of traffic density on drivers’ lane change and overtaking maneuvers in freeway situation—A driving simulator–based study. Traffic Injury Prevention, 19(6), 594–600. doi:10.1080/15389588.2018.1471470.

Ali, Y., Zheng, Z., Haque, M. M., Yildirimoglu, M., & Washington, S. (2021). CLACD: A complete LAne-Changing decision modeling framework for the connected and traditional environments. Transportation Research Part C: Emerging Technologies, 128. doi:10.1016/j.trc.2021.103162.

Vandaele, N., Woensel, T. Van, & Verbruggen, A. (2000). A queueing based traffic flow model. Transportation Research Part D: Transport and Environment, 5(2), 121–135. doi:10.1016/S1361-9209(99)00028-0.

Arai, K., & Ray, S. (2015). Driver’s Awareness and Lane Changing Maneuver in Traffic Flow based on Cellular Automaton Model. International Journal of Advanced Research in Artificial Intelligence, 4(8), 34–41. doi:10.14569/ijarai.2015.040805.

Bae, B., Liu, Y., Han, L. D., & Bozdogan, H. (2019). Spatio-temporal traffic queue detection for uninterrupted flows. Transportation Research Part B: Methodological, 129, 20–34. doi:10.1016/j.trb.2019.09.001.

Tukur, D. (2008). P–value, a true test of statistical significance? A cautionary note. Encyclopedia of Public Health, Springer, Dordrecht, Netherlands. doi:10.1007/978-1-4020-5614-7_2883.

Young, I. T. (1977). Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. Journal of Histochemistry & Cytochemistry, 25(7), 935–941.doi:10.1177/25.7.894009.

Massey, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), 68. doi:10.2307/2280095.

Maurya, A. K. (2016). Analysis of Vehicular Headway Distribution in Urban Area. International Conference on Recent Trends and Challenges in Civil Engineering, 12-14 December, 2014, Allahabad, India.

Reddy, N., Hoogendoorn, S. P., & Farah, H. (2022). How do the recognizability and driving styles of automated vehicles affect human drivers’ gap acceptance at T-Intersections?. Transportation research part F: traffic psychology and behaviour, 90, 451-465. doi:10.1016/j.trf.2022.09.018.

Imran, W., Khan, Z. H., Gulliver, T. A., Khattak, K. S., Saeed, S., & Aslam, M. S. (2021). Macroscopic traffic flow characterization for stimuli based on driver reaction. Civil Engineering Journal (Iran), 7(1), 1–13. doi:10.28991/cej-2021-03091632.

Ahmed, A., Ngoduy, D., Adnan, M., & Baig, M. A. U. (2021). On the fundamental diagram and driving behavior modeling of heterogeneous traffic flow using UAV-based data. Transportation Research Part A: Policy and Practice, 148, 100–115. doi:10.1016/j.tra.2021.03.001.

Zhang, Y., Fang, H., & Chen, C. H. (2022). A Hand Over and Call Arrival Cellular Signals-based Traffic Density Estimation Method. Companion Proceedings of the Web Conference 2022. doi:10.1145/3487553.3524709.

Wan, Q., Peng, G., Li, Z., & Inomata, F. H. T. (2020). Spatiotemporal trajectory characteristic analysis for traffic state transition prediction near expressway merge bottleneck. Transportation Research Part C: Emerging Technologies, 117. doi:10.1016/j.trc.2020.102682.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-11-02


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.