Effects of Stir Casting Baffles on Hardness and Microstructure: Investigation of Designed Aluminum Composites

Eko Surojo, Hammar Ilham Akbar, Dody Ariawan, Aditya Rio Prabowo, Teguh Triyono, Fahmi Imanullah

Abstract


The increasing demand for lightweight material specifications has forced researchers to develop lightweight materials that are inexpensive, can be produced on a large scale, and are environmentally friendly. One solution that has been developed is an aluminum composite reinforced with sea sand. Indonesia has the second longest coastline in the world, which means that the country is rich in maritime resources, one of which is sea sand. The ceramic contents of SiO2, SiC, and Al2O3allow sea sand to be used as a reinforcement in aluminum composites for engineering purposes. The most effective manufacturing method of AA6061–sea sand composites is stir casting, but the homogeneity and distribution of particles are the main disadvantages of the stir casting method. Various factors affect particle distribution and homogeneity, one of which is the flow during the stirring process. The increase in turbulent flow in the stirring process affects the homogeneity and distribution of the particles. One way to create a turbulent flow when stirring is to add baffles. This paper examines the effect of adding baffles during the stir casting process on the mechanical properties of AA6061–sea sand composites. The mechanical properties of AA6061–sea sand composites were characterized using the Brinell hardness test according to ASTM E-10. The test results show that the addition of baffles during the stir casting process decreases the hardness of the AA6061–sea sand composites due to the turbulent flow that occurs. This makes the material more porous, which makes the AA6061–sea sand composites less hard.

 

Doi: 10.28991/CEJ-2022-08-08-04

Full Text: PDF


Keywords


AA6061; Sea Sand; Mechanical Properties; Stir Casting; Baffle.

References


Verma, V., Tewari, P. C., Ahamed, R. Z., & Ahmed, S. T. (2019). Effect of addition of fly ash and Al2O3 particles on mechanical and tribological behavior of Al MMC at varying load, time and speed. Procedia Structural Integrity, 14, 68–77. doi:10.1016/j.prostr.2019.05.010.

Koli, D. K., Agnihotri, G., & Purohit, R. (2015). Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields. Materials Today: Proceedings, 2(4-5), 3032-3041. doi:10.1016/j.matpr.2015.07.290.

Zulfia, A., & Ajiriyanto, M. K. (2011). Effect of artificial aging (T6) on microstructure of Al-AC8H/Al 2O3 MMC produced by stir casting route. Advanced Materials Research, 328–330, 1552–1555. doi:10.4028/www.scientific.net/AMR.328-330.1552.

Akbar, H. I., Surojo, E., Ariawan, D., Prabowo, A. R., & Imanullah, F. (2021). Fabrication of AA6061-sea sand composite and analysis of its properties. Heliyon, 7(8), 7770. doi:10.1016/j.heliyon.2021.e07770.

Fanani, E. W. A., Surojo, E., Prabowo, A. R., & Akbar, H. I. (2021). Recent progress in hybrid aluminum composite: Manufacturing and application. Metals, 11(12). doi:10.3390/met11121919.

Rusianto, T., WIldan, M. W., Abraha, K., & Kusmono, K. (2012). Magnetic Ceramic Materials from Iron Sand of the South Coast Bantul Yogyakarta. Proceeding Seminar Nasional Tahunan Teknik Mesin XI, XI, 16–17 October, 2012, Yogyakarta, Indonesia.

Ardiani, N. R., Setianto, S., Santosa, B., Wibawa, B. M., Panatarani, C., & Joni, I. M. (2020). Quantitative analysis of iron sand mineral content from the south coast of Cidaun, West Java using rietveld refinement method. 3rd International Conference on Condensed Matter and Applied Physics (Icc-2019). doi:10.1063/5.0003018.

Arsyad, M., Tiwow, V. A., & Rampe, M. J. (2018). Analysis of magnetic minerals of iron sand deposit in Sampulungan Beach, Takalar Regency, South Sulawesi using the x-ray diffraction method. Journal of Physics: Conference Series, 1120(1). doi:10.1088/1742-6596/1120/1/012060.

Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., & Gupta, P. (2019). Advance research progresses in aluminium matrix composites: manufacturing & applications. Journal of Materials Research and Technology, 8(5), 4924–4939. doi:10.1016/j.jmrt.2019.06.028.

Annigeri, U. K., & Veeresh Kumar, G. B. (2017). Method of stir casting of Aluminum metal matrix Composites: A review. Materials Today: Proceedings, 4(2), 1140–1146. doi:10.1016/j.matpr.2017.01.130.

Satheesh, M., & Pugazhvadivu, M. (2019). Investigation on physical and mechanical properties of Al6061-Silicon Carbide (SiC)/Coconut shell ash (CSA) hybrid composites. Physica B: Condensed Matter, 572, 70–75. doi:10.1016/j.matpr.2017.01.130.

Akbar, H. I., Surojo, E., Ariawan, D., Putra, G. A., & Wibowo, R. T. (2020). Effect of reinforcement material on properties of manufactured aluminum matrix composite using stir casting route. Procedia Structural Integrity, 27, 62–68. doi:10.1016/j.prostr.2020.07.009.

Suresh, V., Vikram, P., Palanivel, R., & Laubscher, R. F. (2018). Mechanical and wear behavior of LM25 Aluminium matrix hybrid composite reinforced with Boron carbide, Graphite and Iron oxide. Materials Today: Proceedings, 5(14), 27852–27860. doi:10.1016/j.matpr.2018.10.023.

Gu, D., Liu, Z., Qiu, F., Li, J., Tao, C., & Wang, Y. (2017). Design of impeller blades for efficient homogeneity of solid-liquid suspension in a stirred tank reactor. Advanced Powder Technology, 28(10), 2514–2523. doi:10.1016/j.apt.2017.06.027.

Shahrokhi, M., Rostami, F., Md Said, M. A., Sabbagh Yazdi, S. R., & Syafalni. (2012). The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Applied Mathematical Modelling, 36(8), 3725–3735. doi:10.1016/j.apm.2011.11.001.

Takahashi, K., Sugo, Y., Takahata, Y., Sekine, H., & Nakamura, M. (2012). Laminar mixing in stirred tank agitated by an impeller inclined. International Journal of Chemical Engineering. doi:10.1155/2012/858329.

Atibeni, R., Gao, Z., & Bao, Y. (2013). Effect of baffles on fluid flow field in stirred tank with floating particles by using PIV. Canadian Journal of Chemical Engineering, 91(3), 570–578. doi:10.1002/cjce.21652.

Pukkella, A. K., Vysyaraju, R., Tammishetti, V., Rai, B., & Subramanian, S. (2019). Improved mixing of solid suspensions in stirred tanks with interface baffles: CFD simulation and experimental validation. Chemical Engineering Journal, 358, 621–633. doi:10.1016/j.cej.2018.10.020.

Rohatgi, P. K., Sobczak, J., Asthana, R., & Kim, J. K. (1998). Inhomogeneities in silicon carbide distribution in stirred liquids - A water model study for synthesis of composites. Materials Science and Engineering A, 252(1), 98–108. doi:10.1016/S0921-5093(98)00651-0.

Tran, T. T., Vo, T. T., Cho, S. C., Lee, D. H., & Hwang, W. R. (2018). A stir casting system for drawdown of light particles in manufacturing of metal matrix composites. Journal of Materials Processing Technology, 257, 123–131. doi:10.1016/j.jmatprotec.2018.02.025.

Suthar, J., & Patel, K. (2018). Identification, screening and optimization of significant parameters for stir cast hybrid aluminium metal matrix composite. Heliyon, 4(12). doi:10.1016/j.heliyon.2018.e00988.

Sang, K., Yang, J., Shi, W., & Sun, H. (2014). Preparation of coatings on alumina ceramic for wettability. Ceramics International, 40(4), 5659–5663. doi:10.1016/j.ceramint.2013.11.002.

Aqida, S. N., Ghazali, M. I., & Hashim, J. (2012). Effect of Porosity on Mechanical Properties of Metal Matrix Composite: An Overview. Jurnal Teknologi, 40, 17–32. doi:10.11113/jt.v40.395.

Zhang, W. Y., Du, Y. H., & Zhang, P. (2019). Vortex-free stir casting of Al-1.5 wt% Si-SiC composite. Journal of Alloys and Compounds, 787, 206–215. doi:10.1016/j.jallcom.2019.02.099.

Dareini, M., Jabbari, A. H., & Sedighi, M. (2020). Effect of nano-sized Al2O3 reinforcing particles on uniaxial and high cycle fatigue behaviors of hot-forged AZ31B magnesium alloy. Transactions of Nonferrous Metals Society of China, 30(5), 1249-1266. doi:10.1016/S1003-6326(20)65293-1.

Fan, L. J., & Juang, S. H. (2016). Reaction effect of fly ash with Al-3Mg melt on the microstructure and hardness of aluminum matrix composites. Materials and Design, 89, 941–949. doi:10.1016/j.matdes.2015.10.070.

Satish Kumar, T., Shalini, S., Kumar, K. K., Thavamani, R., & Subramanian, R. (2018). Bagasse Ash Reinforced A356 Alloy Composite: Synthesis and Characterization. Materials Today: Proceedings, 5(2), 7123–7130. doi:10.1016/j.matpr.2017.11.377.

Narasaraju, G., & Raju, D. L. (2015). Characterization of hybrid rice husk and fly ash-reinforced aluminium alloy (AlSi10Mg) composites. Materials Today: Proceedings, 2(4-5), 3056-3064. doi:10.1016/j.matpr.2015.07.245.

Mandal, A. K., & Sinha, O. P. (2018). New-Generation Aluminum Composite with Bottom Ash Industrial Waste. The Journal of the Minerals, Metals & Materials Society. JOM, 70(6), 811–816. doi:10.1007/s11837-018-2774-7.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-08-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Eko Surojo, Hammar Ilham Akbar, Dody Ariawan, Aditya Rio Prabowo, Teguh Triyono, Fahmi Imanullah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message