Forecasting the Effects of Failure Criteria in Assessing Ship Structural Damage Modes
Downloads
Doi: 10.28991/CEJ-2022-08-10-03
Full Text: PDF
Downloads
[2] Allianz. (2021). Safety and shipping review 2021. Allianz Global Corporate & Specialty, Munich, Germany.
[3] Ridwan, Putranto, T., Laksono, F. B., & Prabowo, A. R. (2020). Fracture and damage to the material accounting for transportation crash and accident. Procedia Structural Integrity, 27(2020), 38–45. doi:10.1016/j.prostr.2020.07.006.
[4] Prabowo, A. R., Tuswan, T., Prabowoputra, D. M., & Ridwan, R. (2021). Deformation of designed steel plates: An optimization of the side hull structure using the finite element approach. Open Engineering, 11(1), 1034–1047. doi:10.1515/eng-2021-0104.
[5] Fajri, A., Prabowo, A. R., & Muhayat, N. (2022). Assessment of ship structure under fatigue loading: FE benchmarking and extended performance analysis. Curved and Layered Structures, 9(1), 163–186. doi:10.1515/cls-2022-0014.
[6] Prabowo, A. R., Tuswan, T., & Ridwan, R. (2021). Advanced development of sensors' roles in maritime"based industry and research: From field monitoring to high"risk phenomenon measurement. Applied Sciences (Switzerland), 11(9), 3954. doi:10.3390/app11093954.
[7] Ansori, D. T. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Laksono, F. B., Tjahjana, D. D. D. P., Prasetyo, A., & Kuswardi, Y. (2022). Investigation of Honeycomb Sandwich Panel Structure using Aluminum Alloy (AL6XN) Material under Blast Loading. Civil Engineering Journal (Iran), 8(5), 1046–1068. doi:10.28991/CEJ-2022-08-05-014.
[8] Minorsly, V. U. (1959). An Analysis of ship Collisions with Reference to Protection of Nuclear Power Plants.pdf. Journal of Ship Research, 3(2), 1–4.
[9] Lehmann, E., & Peschmann, J. (2002). Energy absorption by the steel structure of ships in the event of collisions. Marine Structures, 15(4–5), 429–441. doi:10.1016/S0951-8339(02)00011-4.
[10] Scharrer, M., Zhang, L., & Egge, E.-D. (2002). Abschlußbericht zum Vorhaben MTK0614, Kollisionsberechnungen in schiffbaulichen Entwurfssystemen (Collision calculations in naval engineering design systems). Version 1/2002-11-22. Bericht Nr. ESS 202.183; Version 1/2002-11-22, Hamburg, Germany.
[11] Törnqvist, R. (2003). Design of crashworthy ship structures. PhD Thesis, Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark.
[12] Liu, B., Villavicencio, R., Zhang, S., & Guedes Soares, C. (2017). A simple criterion to evaluate the rupture of materials in ship collision simulations. Marine Structures, 54, 92–111. doi:10.1016/j.marstruc.2017.03.006.
[13] Alwan, F. H. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Ridwan, R., & Laksono, F. B. (2022). Assessment of ballistic impact damage on aluminum and magnesium alloys against high velocity bullets by dynamic FE simulations. Journal of the Mechanical Behavior of Materials, 31(1), 595–616. doi:10.1515/jmbm-2022-0064.
[14] Ehlers, S., Broekhuijsen, J., Alsos, H. S., Biehl, F., & Tabri, K. (2008). Simulating the collision response of ship side structures: A failure criteria benchmark study. International Shipbuilding Progress, 55(1–2), 127–144. doi:10.3233/ISP-2008-0042.
[15] Alsos, H. S., Amdahl, J., & Hopperstad, O. S. (2009). On the resistance to penetration of stiffened plates, Part II: Numerical analysis. International Journal of Impact Engineering, 36(7), 875–887. doi:10.1016/j.ijimpeng.2008.11.004.
[16] Marinatos, J. N., & Samuelides, M. S. (2015). Towards a unified methodology for the simulation of rupture in collision and grounding of ships. Marine Structures, 42, 1–32. doi:10.1016/j.marstruc.2015.02.006.
[17] Abubakar, A., & Dow, R. S. (2013). Simulation of ship grounding damage using the finite element method. International Journal of Solids and Structures, 50(5), 623–636. doi:10.1016/j.ijsolstr.2012.10.016.
[18] Storheim, M., Amdahl, J., & Martens, I. (2015). On the accuracy of fracture estimation in collision analysis of ship and offshore structures. Marine Structures, 44, 254–287. doi:10.1016/j.marstruc.2015.09.006.
[19] Sèbe, M., Kontovas, C. A., & Pendleton, L. (2020). Reducing whale-ship collisions by better estimating damages to ships. Science of the Total Environment, 713, 136643. doi:10.1016/j.scitotenv.2020.136643.
[20] Callister Jr, W. D. (2000). Materials Science and Engineering-An Introduction (5th Ed.). John Wiley & Sons, Hoboken, United States. doi:10.1108/acmm.2000.12847aae.001.
[21] ANSYS. (2020). ANSYS LS-DYNA User's Guide. ANSYS, Inc., Pennsylvania, United States.
[22] Rice, J. R., & Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 17(3), 201–217. doi:10.1016/0022-5096(69)90033-7.
[23] Cockcroft, M. G., & Latham, D. J. (1968). Ductility and the workability of metals. Journal of the Institute of Metals, 96(1), 33–39.
[24] Cabezas, E. E., & Celentano, D. J. (2004). Experimental and numerical analysis of the tensile test using sheet specimens. Finite Elements in Analysis and Design, 40(5–6), 555–575. doi:10.1016/S0168-874X(03)00096-9.
[25] Abdullah, K. A., Mohamed Ali, J. S., & Aminanda, Y. (2012). Experimental and numerical simulation of hollow structure under compression loading. Advanced Materials Research, 576, 651–654. doi:10.4028/www.scientific.net/AMR.576.651.
[26] Ridwan, R., Nuriana, W., & Prabowo, A. R. (2022). Energy absorption behaviors of designed metallic square tubes under axial loading: Experiment-based benchmarking and finite element calculation. Journal of the Mechanical Behavior of Materials, 31(1), 443–461. doi:10.1515/jmbm-2022-0052.
[27] Prabowo, A. R., Ridwan, R., & Muttaqie, T. (2022). On The Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates. Designs, 6(3), 46. doi:10.3390/designs6030046.
[28] Widiyanto, I., Alwan, F. H. A., Mubarok, M. A. H., Prabowo, A. R., Laksono, F. B., Bahatmaka, A., Adiputra, R., & Smaradhana, D. F. (2021). Effect of geometrical variations on the structural performance of shipping container panels: A parametric study towards a new alternative design. Curved and Layered Structures, 8(1), 271–306. doi:10.1515/cls-2021-0024.
[29] Dzulfiqar, M. F., Prabowo, A. R., Ridwan, R., & Nubli, H. (2021). Assessment on the designed structural frame of the automatic thickness checking machine - Numerical validation in FE method. Procedia Structural Integrity, 33(C), 59–66. doi:10.1016/j.prostr.2021.10.009.
[30] Wu, H. C., Xu, Z., & Wang, P. T. (1997). Torsion test of aluminum in the large strain range. International Journal of Plasticity, 13(10), 873–892. doi:10.1016/S0749-6419(97)00064-8.
[31] Rhíªme, M., Botsis, J., Cugnoni, J., & Navi, P. (2013). Influence of the moisture content on the fracture characteristics of welded wood joint. Part 2: Mode II fracture. Holzforschung, 67(7), 755–761. doi:10.1515/hf-2012-0145.
[32] Salehghaffari, S., Tajdari, M., Panahi, M., & Mokhtarnezhad, F. (2010). Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading. Thin-Walled Structures, 48(6), 379–390. doi:10.1016/j.tws.2010.01.012.
[33] Lu, G., & Yu, T. (2003). Energy Absorption of Structures and Materials. Woodhead Publishing Limited, Cambridge, England. doi:10.1533/9781855738584.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.