Experimental Establishing of Moving Hydraulic Jump in a Trapezoidal Channel
Abstract
Doi: 10.28991/CEJ-2023-09-04-08
Full Text: PDF
Keywords
References
Sun, B., Zhu, S., Yang, L., Liu, Q., Zhang, C., & Zhang, J. ping. (2021). Experimental and Numerical Investigation of Flow Measurement Mechanism and Hydraulic Performance on Curved Flume in Rectangular Channel. Arabian Journal for Science and Engineering, 46(5), 4409–4420. doi:10.1007/s13369-020-04949-x.
Xiao, Y., Wang, W., Hu, X., & Zhou, Y. (2016). Experimental and numerical research on portable short-throat flume in the field. Flow Measurement and Instrumentation, 47, 54–61. doi:10.1016/j.flowmeasinst.2015.11.003.
Sun, B., Yang, L., Zhu, S., Liu, Q., Wang, C., & Zhang, C. (2021). Study on the applicability of four flumes in small rectangular channels. Flow Measurement and Instrumentation, 80, 101967. doi:10.1016/j.flowmeasinst.2021.101967.
Ran, D., Wang, W., & Hu, X. (2018). Three-dimensional numerical simulation of flow in trapezoidal cutthroat flumes based on FLOW-3D. Frontiers of Agricultural Science and Engineering, 5(2), 168–176. doi:10.15302/J-FASE-2018217.
Savage, B., Heiner, B., & Barfuss, S. L. (2013). Parshall Flume Discharge Correction Coefficients Through. Journal of Water Management. 167(5), 279-287. doi:10.1680/wama.12.00112.
Willeitner, R. P., Barfuss, S. L., & Johnson, M. C. (2013). Using Numerical Modeling to Correct Flow Rates for Submerged Montana Flumes. Journal of Irrigation and Drainage Engineering, 139(7), 586–592. doi:10.1061/(asce)ir.1943-4774.0000576.
Watral, Z., Jakubowski, J., & Michalski, A. (2015). Electromagnetic flow meters for open channels: Current state and development prospects. Flow Measurement and Instrumentation, 42, 16–25. doi:10.1016/j.flowmeasinst.2015.01.003.
Savage, B. M., Heiner, B., & Barfuss, S. L. (2014, May). Parshall flume discharge correction coefficients through modelling. Proceedings of the Institution of Civil Engineers, Water Management, 167(5), 279-287. doi:10.1680/wama.12.00112.
Heyrani, M. (2022). Numerical Modeling of Flow in Parshall Flume Using Various Turbulence Models. Ph.D. Thesis, University of Ottawa, Ottawa, Canada.
Panchigar, D., Kar, K., Shukla, S., Mathew, R. M., Chadha, U., & Selvaraj, S. K. (2022). Machine learning-based CFD simulations: a review, models, open threats, and future tactics. Neural Computing and Applications, 34(24), 21677–21700. doi:10.1007/s00521-022-07838-6.
Katopodes, N. D. (2018). Free-surface flow: environmental fluid mechanics. Butterworth-Heinemann, Oxford, United Kingdom.
Tu, J., Yeoh, G. H., & Liu, C. (2018). Computational fluid dynamics: a practical approach. Butterworth-Heinemann, Oxford, United Kingdom.
Clemmens, A. J., Wahl, T. L., Bos, M. G., & Replogle, J. A. (2001). Water measurement with flumes and weirs (No. 58). International Institute for Land Reclamation and Improvement/ILRI, Washington, United States.
Heyrani, M., Mohammadian, A., & Nistor, I. (2021). Numerical simulation of flow in Parshall flume using selected nonlinear turbulence models. Hydrology, 8(4), 151. doi:10.3390/hydrology8040151.
Heyrani, M., Mohammadian, A., Nistor, I., & Dursun, O. F. (2021). Numerical modeling of Venturi flume. Hydrology, 8(1), 1–17. doi:10.3390/hydrology8010027.
Imanian, H., & Mohammadian, A. (2019). Numerical simulation of flow over ogee crested spillways under high hydraulic head ratio. Engineering Applications of Computational Fluid Mechanics, 13(1), 983–1000. doi:10.1080/19942060.2019.1661014.
Khosronejad, A., Herb, W., Sotiropoulos, F., Kang, S., & Yang, X. (2021). Assessment of Parshall flumes for discharge measurement of open-channel flows: A comparative numerical and field case study. Measurement, 167, 108292. doi:10.1016/j.measurement.2020.108292.
Dursun, O. F. (2016). An experimental investigation of the aeration performance of parshall flume and venturi flumes. KSCE Journal of Civil Engineering, 20(2), 943–950. doi:10.1007/s12205-015-0645-0.
Bijankhan, M., & Kouchakzadeh, S. (2015). The hydraulics of parallel sluice gates under low flow delivery condition. Flow Measurement and Instrumentation, 41, 140–148. doi:10.1016/j.flowmeasinst.2014.10.017.
Rezaie Shaddehi, F., & Bijankhan, M. (2020). Experimental study on free and submerged multi-jets. Flow Measurement and Instrumentation, 75, 101805. doi:10.1016/j.flowmeasinst.2020.101805.
Sauida, M. F. (2013). Reverse flow downstream multi-vent regulators. Ain Shams Engineering Journal, 4(2), 207–214. doi:10.1016/j.asej.2012.09.002.
Zerihun, Y. T. (2016). A numerical study on curvilinear free surface flows in Venturi flumes. Fluids, 1(3), 21. doi:10.3390/fluids1030021.
Tiwari, N. K., & Sihag, P. (2020). Prediction of oxygen transfer at modified Parshall flumes using regression models. ISH Journal of Hydraulic Engineering, 26(2), 209–220. doi:10.1080/09715010.2018.1473058.
Tekade, S. A., Vasudeo, A. D., Ghare, A. D., & Ingle, R. N. (2016). Measurement of flow in supercritical flow regime using cutthroat flumes. Sadhana, 41(2), 265–272. doi:10.1007/s12046-016-0463-1.
Robertson, E. D., Chitta, V., Walters, D. K., & Bhushan, S. (2014). On the Vortex Breakdown Phenomenon in High Angle of Attack Flows over Delta Wing Geometries. Volume 1: Advances in Aerospace Technology. doi:10.1115/imece2014-39354.
Ribeiro, Á. S., Alves e Sousa, J., Simões, C., Lages Martins, L., Dias, L., Mendes, R., & Martins, C. (2021). Parshall flumes flow rate uncertainty including contributions of the model parameters and correlation effects. Measurement: Sensors, 18, 100108. doi:10.1016/j.measen.2021.100108.
Qian, S. Tuo, Zhang, Y., Xu, H., Wang, X. Sheng, Feng, J. Gang, & Li, Z. Xiang. (2021). Effects of surface roughness on overflow discharge of embankment weirs. Journal of Hydrodynamics, 33(4), 773–781. doi:10.1007/s42241-021-0068-y.
Adedoyin, A. A., Walters, D. K., & Bhushan, S. (2015). Investigation of turbulence model and numerical scheme combinations for practical finite-volume large eddy simulations. Engineering Applications of Computational Fluid Mechanics, 9(1), 324–342. doi:10.1080/19942060.2015.1028151.
Li, P., Zhu, D. Z., Xu, T., & Zhang, J. (2022). Air Demand of a Hydraulic Jump in a Closed Conduit. Journal of Hydraulic Engineering, 148(2). doi:10.1061/(asce)hy.1943-7900.0001963.
DOI: 10.28991/CEJ-2023-09-04-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Najah Kadhim Al-Bedyry, Maher Abdul Ameer Kadim, Saman Hama Hussein, Zainab Sattar Al-Khafaji, Fatimah Al-Husseinawi
This work is licensed under a Creative Commons Attribution 4.0 International License.