Spatial Modeling of Flood-Vulnerability as Basic Data for Flood Mitigation

Iin Arianti, Muhammad Rafani, Nurul Fitriani, . Nizar


Identifying risks in flood-prone areas is necessary to support risk management decisions. This research was conducted to establish a vulnerability model of flood hazards in the city of Pontianak. The model was based on the scoring and weighting of biophysical factors. The AHP method and logical formulations were used to establish the model. The result showed that the accuracy of the model used by AHP to determine the vulnerability of floods was 80% in Pontianak City. The accuracy of the model using logical formulations to determine the vulnerability level of a flood was 84%. The Kappa accuracy value in model 1 is 76.7%. The model of flood vulnerability explains that most of Pontianak City has a very high level of flood vulnerability, which is 31,440,568.8 m2 or 29.11% of the total research area of 108,003,319.8 m2. The vulnerable area is 29,945,485.7 m2 or 27.73%, and the less safe area is 22,126,936.3 m2 or 20.49%, with the safe area being 24,490,328.7 m2or 22.67% of the total area. This research contributes to the government to establish policies regarding flood management and urban development in the future, and as an effort to mitigate against flooding.


Doi: 10.28991/CEJ-2023-09-04-02

Full Text: PDF


Spatial Model; Flood Vulnerability; Bio-Physical; AHP; Kappa Accuracy.


Balica, S. F., Popescu, I., Beevers, L., & Wright, N. G. (2013). Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison. Environmental Modelling and Software, 41, 84–92. doi:10.1016/j.envsoft.2012.11.002.

Chan, S. W., Abid, S. K., Sulaiman, N., Nazir, U., & Azam, K. (2022). A systematic review of the flood vulnerability using geographic information system. Heliyon, 8(3). doi:10.1016/j.heliyon.2022.e09075.

Abid, S. K., Sulaiman, N., Mahmud, N. P. N., Nazir, U., & Adnan, N. A. (2020). A review on the application of remote sensing and geographic information system in flood crisis management. Journal of Critical Reviews, 7(16), 491–496. doi:10.31838/jcr.07.16.58.

Sahana, M., & Sajjad, H. (2019). Vulnerability to storm surge flood using remote sensing and GIS techniques: A study on Sundarban Biosphere Reserve, India. Remote Sensing Applications: Society and Environment, 13, 106–120. doi:10.1016/j.rsase.2018.10.008.

Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1). doi:10.1016/j.heliyon.2020.e05865.

Feloni, E., Mousadis, I., & Baltas, E. (2020). Flood vulnerability assessment using a GIS-based multi-criteria approach—The case of Attica region. Journal of Flood Risk Management, 13(S1), 233–243. doi:10.1111/jfr3.12563.

Kirby, R. H., Reams, M. A., Lam, N. S. N., Zou, L., Dekker, G. G. J., & Fundter, D. Q. P. (2019). Assessing Social Vulnerability to Flood Hazards in the Dutch Province of Zeeland. International Journal of Disaster Risk Science, 10(2), 233–243. doi:10.1007/s13753-019-0222-0.

Nazeer, M., & Bork, H. R. (2021). A local scale flood vulnerability assessment in the flood-prone area of Khyber Pakhtunkhwa, Pakistan. Natural Hazards, 105(1), 755–781. doi:10.1007/s11069-020-04336-7.

Pathak, S., Panta, H. K., Bhandari, T., & Paudel, K. P. (2020). Flood vulnerability and its influencing factors. Natural Hazards, 104(3), 2175–2196. doi:10.1007/s11069-020-04267-3.

Djamaluddin, I., Indrayani, P., & Caronge, M. A. (2020). A GIS analysis approach for flood vulnerability and risk assessment index models at sub-district scale. IOP Conference Series: Earth and Environmental Science, 419(1). doi:10.1088/1755-1315/419/1/012019.

Lyu, H. M., Sun, W. J., Shen, S. L., & Arulrajah, A. (2018). Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Science of the Total Environment, 626, 1012–1025. doi:10.1016/j.scitotenv.2018.01.138.

Hosseini, F. S., Sigaroodi, S. K., Salajegheh, A., Moghaddamnia, A., & Choubin, B. (2021). Towards a flood vulnerability assessment of watershed using integration of decision-making trial and evaluation laboratory, analytical network process, and fuzzy theories. Environmental Science and Pollution Research, 28(44), 62487–62498. doi:10.1007/s11356-021-14534-w.

Arianti, I., & Rafani, M. (2021). Analysis of Land Use Changes in Pontianak City from 2008 to 2021 Using GIS and Remote Sensing. International Journal of Research in Engineering and Science, 9(12), 34–42.

Arianti, I., Rafani, M., & Reski, I. A. (2021). Analysis of Land Cover Changes in POntianak City from Year 2005 t0 2020 Using GIS and Remote Sensing. International Journal of Applied Science and Research, 3, 144–149.

Arianti, I., & Rafani, M. (2022). Making Rainfall Thematic Maps. Deepublish. (In Indonesian).

Arianti, I., Soemarno, W, Hasyim. A., & Sulistyono, R. (2018). Rainfall Estimation by Using Thiessen Polygon, Inverse Distance Wighted, Spline, and Kriging Methods: A Case Study in Pontianak, West Kalimantan. International Journal of Education and Research, 6(11), 301–310.

Montealegre, A. L., García-Pérez, S., Guillén-Lambea, S., Monzón-Chavarrías, M., & Sierra-Pérez, J. (2022). GIS-based assessment for the potential of implementation of food-energy-water systems on building rooftops at the urban level. Science of the Total Environment, 803, 149963. doi:10.1016/j.scitotenv.2021.149963.

Muñoz, D. S., & García, J. L. D. (2021). GIS-based tool development for flooding impact assessment on electrical sector. Journal of Cleaner Production, 320, 128793. doi:10.1016/j.jclepro.2021.128793.

Arianti, I., Soemarno, W, Hasyim. A., & Sulistyono, R. (2018). Determining Variable Weight of Flood Vulnerability Spatial Model in Pontianak City Based On Analytic Hierarchy Process (AHP). International Journal of Humanities, Religion and Social Science. 2(9). 45-51.

Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill, New York, United States.

Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water (Switzerland), 6(6), 1515–1545. doi:10.3390/w6061515.

Nguyen, K. A., & Liou, Y. A. (2019). Global mapping of eco-environmental vulnerability from human and nature disturbances. Science of the Total Environment, 664, 995–1004. doi:10.1016/j.scitotenv.2019.01.407.

Khosravi, K., Bordbar, M., Paryani, S., Saco, P. M., & Kazakis, N. (2021). New hybrid-based approach for improving the accuracy of coastal aquifer vulnerability assessment maps. Science of the Total Environment, 767, 145416. doi:10.1016/j.scitotenv.2021.145416.

Paprotny, D., Kreibich, H., Morales-Nápoles, O., Castellarin, A., Carisi, F., & Schröter, K. (2020). Exposure and vulnerability estimation for modelling flood losses to commercial assets in Europe. Science of the Total Environment, 737, 140011. doi:10.1016/j.scitotenv.2020.140011.

Percival, S., & Teeuw, R. (2019). A methodology for urban micro-scale coastal flood vulnerability and risk assessment and mapping. Natural Hazards, 97(1), 355–377. doi:10.1007/s11069-019-03648-7.

Rehman, S., Sahana, M., Hong, H., Sajjad, H., & Ahmed, B. Bin. (2019). A systematic review on approaches and methods used for flood vulnerability assessment: framework for future research. Natural Hazards, 96(2), 975–998. doi:10.1007/s11069-018-03567-z.

Rodríguez-Rosales, B., Abreu, D., Ortiz, R., Becerra, J., Cepero-Acán, A. E., Vázquez, M. A., & Ortiz, P. (2021). Risk and vulnerability assessment in coastal environments applied to heritage buildings in Havana (Cuba) and Cadiz (Spain). Science of the Total Environment, 750, 141617. doi:10.1016/j.scitotenv.2020.141617.

Singh, G., & Pandey, A. (2021). Flash flood vulnerability assessment and zonation through an integrated approach in the Upper Ganga Basin of the Northwest Himalayan region in Uttarakhand. International Journal of Disaster Risk Reduction, 66, 102573. doi:10.1016/j.ijdrr.2021.102573.

da Silveira, Y. G., & Bonetti, J. (2019). Assessment of the physical vulnerability to erosion and flooding in a sheltered coastal sector: Florianópolis Bay, Brazil. Journal of Coastal Conservation, 23(2), 303–314. doi:10.1007/s11852-018-0659-0.

Gurri, F. D., Ruiz-García, W., Molina-Rosales, D. O., & Vallejo-Nieto, M. I. (2019). Measuring individual vulnerability to floods in the lower and middle Grijalva River Basin, Tabasco, Mexico. Natural Hazards, 96(1), 149–171. doi:10.1007/s11069-018-3533-3.

Ahmad, D., & Afzal, M. (2019). Household vulnerability and resilience in flood hazards from disaster-prone areas of Punjab, Pakistan. Natural Hazards, 99(1), 337–354. doi:10.1007/s11069-019-03743-9.

Diaz-Sarachaga, J. M., & Jato-Espino, D. (2020). Analysis of vulnerability assessment frameworks and methodologies in urban areas. Natural Hazards, 100(1), 437–457. doi:10.1007/s11069-019-03805-y.

Jamshed, A., Rana, I. A., Mirza, U. M., & Birkmann, J. (2019). Assessing relationship between vulnerability and capacity: An empirical study on rural flooding in Pakistan. International Journal of Disaster Risk Reduction, 36, 101109. doi:10.1016/j.ijdrr.2019.101109.

Vignesh, K. S., Anandakumar, I., Ranjan, R., & Borah, D. (2021). Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Modeling Earth Systems and Environment, 7(2), 767–781. doi:10.1007/s40808-020-00997-2.

de Brito, M. M., Almoradie, A., & Evers, M. (2019). Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnerability model. International Journal of Geographical Information Science, 33(9), 1788–1806. doi:10.1080/13658816.2019.1599125.

Foody, G. M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239. doi:10.1016/j.rse.2019.111630.

Moreira, L. L., De Brito, M. M., & Kobiyama, M. (2021). Review article: A systematic review and future prospects of flood vulnerability indices. Natural Hazards and Earth System Sciences, 21(5), 1513–1530. doi:10.5194/nhess-21-1513-2021.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-04-02


  • There are currently no refbacks.

Copyright (c) 2023 Iin - Arianti, Muhammad Rafani, Nurul Fitriani, Eva Ryanti, Nizar Nizar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.