Performance Analysis of Nanofluid-based Photovoltaic Thermal Collector with Different Convection Cooling Flow

Zainal Arifin, Nuha Khairunisa, Budi Kristiawan, Singgih Dwi Prasetyo, Watuhumalang Bhre Bangun


Using solar energy through photovoltaic (PV) panels has excellent potential as an alternative energy source. However, the problem of high operating temperatures causing a reduction in work efficiency needs to be addressed. This study aimed to analyze the development of a cooling system to increase PV panels' electrical and thermal efficiency. The research involved analyzing the use of TiO2, Al2O3, and ZnO working fluids by adding 0.5 vol% to water in an active cooling method. The cooling system involved a rectangular spiral and a rectangular tube behind the PV panel. A solar simulator simulated solar radiation with intensity variations to analyze the cooling system's performance in different working conditions. The results showed that the heat exchanger with a nanofluid configuration reduced the panel temperature by 14 oC, which increased the electrical efficiency by up to 4.7% in the ZnO nanofluid. In the rectangular spiral configuration, the ZnO nanofluid reduced the panel temperature from 60 to 45 oC, increasing the Isc value from 2.16A to 2.9A and the Voc value from 21.5V to 23V. This resulted in a maximum power increase of the panel to 53W.


Doi: 10.28991/CEJ-2023-09-08-08

Full Text: PDF


Photovoltaics; Nanofluids Cooling; Temperature; Efficiency; PV Panel.


Kazem, H. A., Al-Badi, H. A. S., Al Busaidi, A. S., & Chaichan, M. T. (2017). Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island. Environment, Development and Sustainability, 19(5), 1761–1778. doi:10.1007/s10668-016-9828-1.

Good, C., Chen, J., Dai, Y., & Hestnes, A. G. (2015). Hybrid Photovoltaic-thermal Systems in Buildings-A Review. Energy Procedia, 70, 683–690. doi:10.1016/j.egypro.2015.02.176.

Yang, T., & Athienitis, A. K. (2016). A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems. Renewable and Sustainable Energy Reviews, 66, 886–912. doi:10.1016/j.rser.2016.07.011.

Fang, X., & Li, D. (2013). Solar photovoltaic and thermal technology and applications in China. Renewable and Sustainable Energy Reviews, 23, 330–340. doi:10.1016/j.rser.2013.03.010.

Arifin, Z., Tribhuwana, B. A., Kristiawan, B., Tjahjana, D. D. D. P., Hadi, S., Rachmanto, R. A., Prasetyo, S. D., & Hijriawan, M. (2022). The Effect of Soybean Wax as a Phase Change Material on the Cooling Performance of Photovoltaic Solar Panel. International Journal of Heat and Technology, 40(1), 326–332. doi:10.18280/ijht.400139.

Hasan, A., McCormack, S. J., Huang, M. J., & Norton, B. (2010). Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Solar Energy, 84(9), 1601–1612. doi:10.1016/j.solener.2010.06.010.

Kumar, A., Baredar, P., & Qureshi, U. (2015). Historical and recent development of photovoltaic thermal (PVT) technologies. Renewable and Sustainable Energy Reviews, 42, 1428–1436. doi:10.1016/j.rser.2014.11.044.

Hajji, M., Labrim, H., Benaissa, M., Laazizi, A., Ez-Zahraouy, H., Ntsoenzok, E., Meot, J., & Benyoussef, A. (2017). Photovoltaic and thermoelectric indirect coupling for maximum solar energy exploitation. Energy Conversion and Management, 136, 184–191. doi:10.1016/j.enconman.2016.12.088.

Shan, F., Tang, F., Cao, L., & Fang, G. (2014). Comparative simulation analyses on dynamic performances of photovoltaic-thermal solar collectors with different configurations. Energy Conversion and Management, 87, 778–786. doi:10.1016/j.enconman.2014.07.077.

Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. doi:10.1002/er.4282.

Hader, M., & Al-Kouz, W. (2019). Performance of a hybrid photovoltaic/thermal system utilizing water-Al2O3 nanofluid and fins. International Journal of Energy Research, 43(1), 219–230. doi:10.1002/er.4253.

Abdolzadeh, M., & Ameri, M. (2009). Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renewable Energy, 34(1), 91–96. doi:10.1016/j.renene.2008.03.024.

Hadipour, A., Rajabi Zargarabadi, M., & Rashidi, S. (2021). An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy, 164, 867–875. doi:10.1016/j.renene.2020.09.021.

Kordzadeh, A. (2010). The effects of nominal power of array and system head on the operation of photovoltaic water pumping set with array surface covered by a film of water. Renewable Energy, 35(5), 1098–1102. doi:10.1016/j.renene.2009.10.024.

Jakhar, S., Soni, M. S., & Gakkhar, N. (2017). An integrated photovoltaic thermal solar (IPVTS) system with earth water heat exchanger cooling: Energy and exergy analysis. Solar Energy, 157, 81–93. doi:10.1016/j.solener.2017.08.008.

Nižetić, S., Čoko, D., Yadav, A., & Grubišić-Čabo, F. (2016). Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Conversion and Management, 108, 287–296. doi:10.1016/j.enconman.2015.10.079.

Chandrasekar, M., & Senthilkumar, T. (2015). Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures. Energy, 90, 1401–1410. doi:10.1016/

Hosseini, R., Hosseini, N., & Khorasanizadeh, H. (2011). An Experimental Study of Combining a Photovoltaic System with a Heating System. Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. doi:10.3384/ecp110572993.

Ibrahim, A., Othman, M. Y., Ruslan, M. H., Mat, S., & Sopian, K. (2011). Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews, 15(1), 352–365. doi:10.1016/j.rser.2010.09.024.

Kahani, M., Zamen, M., & Rostami, B. (2022). Modeling and empirical study of TiO2/water nanofluid flows in a modified configuration with new layer arrangement of a photovoltaic/thermal system. Sustainable Energy Technologies and Assessments, 51. doi:10.1016/j.seta.2021.101932.

Ahmed, A., Zhang, G., Shanks, K., Sundaram, S., Ding, Y., & Mallick, T. (2021). Performance evaluation of single multi-junction solar cell for high concentrator photovoltaics using mini-channel heat sink with nanofluids. Applied Thermal Engineering, 182. doi:10.1016/j.applthermaleng.2020.115868.

Bianco, V., Scarpa, F., & Tagliafico, L. A. (2018). Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector. Renewable Energy, 116, 9–21. doi:10.1016/j.renene.2017.09.067.

Fayaz, H., Nasrin, R., Rahim, N. A., & Hasanuzzaman, M. (2018). Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Solar Energy, 169, 217–230. doi:10.1016/j.solener.2018.05.004.

Al-Shamani, A. N., Sopian, K., Mat, S., Hasan, H. A., Abed, A. M., & Ruslan, M. H. (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management, 124, 528–542. doi:10.1016/j.enconman.2016.07.052.

Ebaid, M. S. Y., Ghrair, A. M., & Al-Busoul, M. (2018). Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture. Energy Conversion and Management, 155, 324–343. doi:10.1016/j.enconman.2017.10.074.

Arifin, Z., Prasetyo, S. D., Tjahjana, D. D. D. P., Rachmanto, R. A., Prabowo, A. R., & Alfaiz, N. F. (2022). The application of TiO2 nanofluids in photovoltaic thermal collector systems. Energy Reports, 8, 1371–1380. doi:10.1016/j.egyr.2022.08.070.

Kristiawan, B., Rifa’i, A. I., Enoki, K., Wijayanta, A. T., & Miyazaki, T. (2020). Enhancing the thermal performance of TiO2/water nanofluids flowing in a helical microfin tube. Powder Technology, 376, 254–262. doi:10.1016/j.powtec.2020.08.020.

Fedele, L., Colla, L., & Bobbo, S. (2012). Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. International Journal of Refrigeration, 35(5), 1359–1366. doi:10.1016/j.ijrefrig.2012.03.012.

Ali, A. R. I., & Salam, B. (2020). A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application. SN Applied Sciences, 2(10). doi:10.1007/s42452-020-03427-1.

Prasetyo, S. D., Prabowo, A. R., & Arifin, Z. (2022). Investigation of Thermal Collector Nanofluids to Increase the Efficiency of Photovoltaic Solar Cells. International Journal of Heat and Technology, 40(2), 415–422. doi:10.18280/ijht.400208.

Arifin, Z., Kuncoro, I. W., & Hijriawan, M. (2021). Solar Simulator Development for 50 WP Solar Photovoltaic Experimental Design Using Halogen Lamp. International Journal of Heat and Technology, 39(6), 1741–1747. doi:10.18280/ijht.390606.

Kristiawan, B., Kamal, S., Suhanan, & Yanuar. (2016). Thermo-hydraulic characteristics of anatase titania nanofluids flowing through a circular conduit. Journal of Nanoscience and Nanotechnology, 16(6), 6078–6085. doi:10.1166/jnn.2016.10902.

Mahanpour, K., Sarli, S., Saghi, M., Asadi, B., Aghayari, R., & Maddah, H. (2015). Investigation on Physical Properties of Al 2 O 3 /Water Nano Fluid. Journal of Materials Science & Surface Engineering, 2(2), 114–119.

Safir, N. H., Razlan, Z. M., Amin, N. A. M., & Bin-Abdun, N. A. (2019). Experimental investigation of thermophysical properties ZnO nanofluid with different concentrations. In AIP Conference Proceedings (Vol. 2129). doi:10.1063/1.5118058.

Apmann, K., Fulmer, R., Soto, A., & Vafaei, S. (2021). Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles. Materials, 14(5), 1–75. doi:10.3390/ma14051291.

Hussein, A. M., Bakar, R. A., Kadirgama, K., & Sharma, K. V. (2013). Experimental measurement of nanofluids thermal properties. International Journal of Automotive and Mechanical Engineering, 7(1), 850–863. doi:10.15282/ijame.7.2012.5.0070.

Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151–170. doi:10.1080/08916159808946559.

Nguyen, C. T., Galanis, N., Polidori, G., Fohanno, S., Popa, C. V., & Le Bechec, A. (2009). An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid. International Journal of Thermal Sciences, 48(2), 401–411. doi:10.1016/j.ijthermalsci.2008.10.007.

Teo, H. G., Lee, P. S., & Hawlader, M. N. A. (2012). An active cooling system for photovoltaic modules. Applied Energy, 90(1), 309–315. doi:10.1016/j.apenergy.2011.01.017.

Gangadevi, R., Vinayagam, B. K., & Senthilraja, S. (2017). Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid. IOP Conference Series: Materials Science and Engineering, 197(1). doi:10.1088/1757-899X/197/1/012041.

Kawajiri, K., Oozeki, T., & Genchi, Y. (2011). Effect of temperature on PV potential in the world. Environmental Science and Technology, 45(20), 9030–9035. doi:10.1021/es200635x.

Al-Waeli, A. H., Chaichan, M. T., Sopian, K., & Kazem, H. A. (2017). Energy storage: CFD modeling of thermal energy storage for a phase change materials (PCM) added to a PV/T using nanofluid as a coolant. Journal of Scientific and Engineering Research, 4(12), 193-202.

Tarrad, A. H. (2022). 3d numerical modeling to evaluate the thermal performance of single and double u-tube ground-coupled heat pump. HighTech and Innovation Journal, 3(2), 115-129. doi:10.28991/HIJ-2022-03-02-01.

Hemmat Esfe, M., Saedodin, S., Wongwises, S., & Toghraie, D. (2015). An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Journal of Thermal Analysis and Calorimetry, 119(3), 1817–1824. doi:10.1007/s10973-014-4328-8.

Hussien, A., Eltayesh, A., & El-Batsh, H. M. (2023). Experimental and numerical investigation for PV cooling by forced convection. Alexandria Engineering Journal, 64, 427–440. doi:10.1016/j.aej.2022.09.006.

Fudholi, A., Sopian, K., Yazdi, M. H., Ruslan, M. H., Ibrahim, A., & Kazem, H. A. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 78, 641–651. doi:10.1016/j.enconman.2013.11.017.

Sardarabadi, M., Hosseinzadeh, M., Kazemian, A., & Passandideh-Fard, M. (2017). Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints. Energy, 138, 682–695. doi:10.1016/

Gang, P., Huide, F., Jie, J., Tin-Tai, C., & Tao, Z. (2012). Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production. Energy Conversion and Management, 56, 8–21. doi:10.1016/j.enconman.2011.11.011.

Ekramian, E., Etemad, S. Gh., & Haghshenasfard, M. (2014). Numerical Analysis of Heat Transfer Performance of Flat Plate Solar Collectors. Journal of Fluid Flow, Heat and Mass Transfer. doi:10.11159/jffhmt.2014.006.

Kaya, H., & Arslan, K. (2018). Numerical investigation of efficiency and economic analysis of an evacuated U-tube solar collector with different nanofluids. Heat and Mass Transfer, 55(3), 581–593. doi:10.1007/s00231-018-2442-z.

Zhang, T., & Yang, H. (2018). High efficiency plants and building integrated renewable energy systems: Building-integrated photovoltaics (BIPV). Handbook of Energy Efficiency in Buildings: A Life Cycle Approach. Elsevier, Amsterdam, Netherlands. doi:10.1016/B978-0-12-812817-6.00040-1.

Siecker, J., Kusakana, K., & Numbi, B. P. (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews, 79, 192–203. doi:10.1016/j.rser.2017.05.053.

Chegaar, M., Hamzaoui, A., Namoda, A., Petit, P., Aillerie, M., & Herguth, A. (2013). Effect of illumination intensity on solar cells parameters. Energy Procedia, 36, 722–729. doi:10.1016/j.egypro.2013.07.084.

Li, Z., Yang, J., & Dezfuli, P. A. N. (2021). Study on the Influence of Light Intensity on the Performance of Solar Cell. International Journal of Photoenergy, 2021. doi:10.1155/2021/6648739.

Bazzari, H., Abushgair, K., Hamdan, M., & Alkhaldi, H. (2020). Cooling solar cells using ZnO nanoparticles as a down-shifter. Thermal Science, 24(2 Part A), 809–814. doi:10.2298/tsci180324004b.

Sathyamurthy, R., Kabeel, A. E., Chamkha, A., Karthick, A., Muthu Manokar, A., & Sumithra, M. G. (2021). Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids. Applied Nanoscience (Switzerland), 11(2), 363–374. doi:10.1007/s13204-020-01598-2.

Skoplaki, E., Boudouvis, A. G., & Palyvos, J. A. (2008). A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells, 92(11), 1393–1402. doi:10.1016/j.solmat.2008.05.016.

Razali, N. F. M., Fudholi, A., Ruslan, M. H., & Sopian, K. (2020). Electrical characteristics of photovoltaic thermal collector with water-titania nanofluid flow. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 73(2), 20–28. doi:10.37934/ARFMTS.73.2.2028.

Hussain, M. I., Lee, G. H., & Kim, J. T. (2021). A comprehensive performance characterization of a nanofluid-powered dual-fluid PV/T system under outdoor steady state conditions. Sustainability (Switzerland), 13(23), 3134. doi:10.3390/su132313134.

Verma, S., Mohapatra, S., Chowdhury, S., & Dwivedi, G. (2020). Cooling techniques of the PV module: A review. Materials Today: Proceedings, 38, 253–258. doi:10.1016/j.matpr.2020.07.130.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-08-08


  • There are currently no refbacks.

Copyright (c) 2023 Zainal Arifin, Nuha Khairunisa, Budi Kristiawan, Singgih Dwi Prasetyo, Watuhumalang Bhre Bangun

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.