Study of the Effect of Magnetic Field on Dispersion of Crushed Portland Cement and Tensile Strength of Cement Stone

Ruslan Ibragimov, Evgenij Korolev, Evgeny Khorkov, Linur Gimranov


This paper investigates the effect of a magnetic field on the grinding processes of Portland cement and the axial tensile strength of cement stone. It was found that the dispersion composition of Portland cement is affected by the magnetic field in two modes. Moreover, the grinding of Portland cement without a magnetic field has subtle modes within small particles (0.1–0.4 microns). The grinding of Portland cement with a magnetic field demonstrates an increase in the mode area of small particles and a decrease in the area of large particles (more than 1.6 microns), with an increase in processing time. In this work, the previously established magnetoplastic effect was confirmed in cement stone only in crystalline samples. The determined effect on cement stone is to reduce its strength by 53-59% and simultaneously increase relative deformation by 63–149%, depending on the specimen size and type. The magnetoplastic effect is also visually recorded on scans of the crack edges in cement stone examined using probe microscopy. The obtained experimental data confirm the validity of the proposed hypothesis of the effect of the magnetic field on polycrystalline materials with isotropic structure, in particular portland cement and cement stone, which consists in the fact that the magnetic field contributes to the accumulation of dislocations in the material, an acceleration of their movement, and the development of cracks.


Doi: 10.28991/CEJ-2023-09-05-015

Full Text: PDF


Electromagnetic Mill; Magnetic Field; Deformation; Energy Consumption; Magnetoplastic Effect; Cement Stone.


Khozin, V. G., Khokhryakov, O. V., Sibgatullin, I. R., Gizzatullin, A. R., & Kharchenko, I. J. (2014). Carbonate cements of low water-need is a green alternative for cement industry of Russia. Construction Materials, (5), 76-82.

Khaydarov, B., Suvorov, D., Pazniak, A., Kolesnikov, E., Gorchakov, V., Mamulat, S., & Kuznetsov, D. (2018). Efficient method of producing clinker-free binding materials using electromagnetic vortex milling. Materials Letters, 226, 13–18. doi:10.1016/j.matlet.2018.05.016.

Wołosiewicz-Glab, M., Piȩta, P., Foszcz, D., Ogonowski, S., & Niedoba, T. (2018). Grinding kinetics adjustment of copper ore grinding in an innovative electromagnetic mill. Applied Sciences (Switzerland), 8(8). doi:10.3390/app8081322.

Ogonowski, S., Wołosiewicz-Głąb, M., Ogonowski, Z., Foszcz, D., & Pawełczyk, M. (2018). Comparison of Wet and Dry Grinding in Electromagnetic Mill. Minerals, 8(4), 138. doi:10.3390/min8040138.

Makarchuk, O., Calus, D., & Moroz, V. (2021). Mathematical Model to Calculate the Trajectories of Electromagnetic Mill Operating Elements. Tekhnichna Elektrodynamika, 2021(2), 26–34. doi:10.15407/techned2021.02.026.

Całus, D., & Makarchuk, O. (2019). Analysis of interaction of forces of working elements in electromagnetic mill. Przeglad Elektrotechniczny, 95(12), 64–69. doi:10.15199/48.2019.12.12.

Milykh, V. I., & Tymin, M. G. (2021). A comparative analysis of the parameters of a rotating magnetic field inductor when using concentric and loop windings. Electrical Engineering and Electromechanics, 4(4), 12–18. doi:10.20998/2074-272X.2021.4.02.

Wołosiewicz-Głąb, M., Ogonowski, S., & Foszcz, D. (2016). Construction of the electromagnetic mill with the grinding system, classification of crushed minerals and the control system. IFAC-PapersOnLine, 49(20), 67–71. doi:10.1016/j.ifacol.2016.10.098.

Wolosiewicz-Glab, M., Ogonowski, S., Foszcz, D., & Gawenda, T. (2018). Assessment of classification with variable air flow for inertial classifier in dry grinding circuit with electromagnetic mill using partition curves. Physicochemical Problems of Mineral Processing, 54(2), 440–447. doi:10.5277/ppmp1867.

Ogonowski, S., Ogonowski, Z., & Swierzy, M. (2017). Power optimizing control of grinding process in electromagnetic mill. Proceedings of the 2017 21st International Conference on Process Control, PC 2017, 370–375. doi:10.1109/PC.2017.7976242.

Shvedchykova, I., Melkonova, I., & Romanchenko, J. (2020). Research of magnetic field distribution in the working area of disk separator, taking into account an influence of materials of permanent magnets. EUREKA, Physics and Engineering, 2020(1), 87–95. doi:10.21303/2461-4262.2020.001106.

Alshits, V. I., Darinskaya, E. V., Koldaeva, M. V., & Petrzhik, E. A. (2008). Dislocations in Solids. Elsevier, Amsterdam, Netherlands.

Alshits, V. I., Darinskaya, E. V., Koldaeva, M. V., & Petrzhik, E. A. (2008). Chapter 86 Magnetoplastic Effect in Nonmagnetic Crystals. Dislocations in Solids, 14, 333–437. doi:10.1016/S1572-4859(07)00006-X.

Golovin, Y. I. (2004). Magnetoplastic effects in solids. Physics of the Solid State, 46(5), 789–824. doi:10.1134/1.1744954.

Koplak, O. V., Dmitriev, A. I., Alekseev, S. I., & Morgunov, R. B.. (2014). Universal regularities of the influence of a magnetic field on the properties of solids. Chemical Physics, 33(12), 18–23. doi:10.7868/s0207401x14120085.

Alshits, V. I., Darinskaya, E. V., Morozov, V. A., Kats, V. M., & Lukin, A. A. (2010). ESR in the Earth’s magnetic field as a cause of dislocation motion in NaCl crystals. JETP Letters, 91(2), 91–95. doi:10.1134/s0021364010020086.

Dunin-Barkovskii, L. R., Morgunov, R. B. & Tanimoto, Y. (2005). The Influence of a Static Magnetic Field up to 15 T on the Manifestation of the Portevin–Le Chatelier Effect in NaCl : Eu Crystals. Physics of the Solid State, 47(7), 1282. doi:10.1134/1.1992606.

Peschanskaya, N. N., & Sinani, A. B. (2008). Effect of the magnetic field on nanometer-scale deformation jumps in polymers. Physics of the Solid State, 50(1), 182–187. doi:10.1134/s1063783408010332.

Morozov, V. A., Petrov, Y. V., & Sukhov, V. D. (2019). Experimental Evaluation of Structural and Temporal Characteristics of Material Fracture Based on Magnetic Pulse Loading of Ring Samples. Technical Physics, 64(5), 642–646. doi:10.1134/S1063784219050165.

Alshits, V. I., Lyubimov, V. N., Sarychev, A. V., & Shuvalov, A. L. (1987). Topological characteristics of singular points of the electric field accompanying sound propagation in piezoelectrics. Soviet Physics—JETP, 66(2), 408-413.

Al’shits, V. I., Darinskaya, E. V., Kazakova, O. L., Mikhina, E. Y., & Petrzhik, E. A. (1996). Magnetoplastic effect and spin-lattice relaxation in a dislocation-paramagnetic-center system. JETP Letters, 63(8), 668–673. doi:10.1134/1.567085.

Golovin, Yu. I. (2004). Magnetoplastic effects in solids. Physics of the Solid State, 46(5), 789–824. doi:10.1134/1.1744954.

Molotsky, M. I. (1991). A possible mechanism of magnetoplastic effect. Solid State Physics, 33(10), 3112-3114.

Kotov, Y. A., Mesyats, G. A., Filatov, A. L., Koryukin, B. M., Boriskov, F. F., Korzhenevskii, S. R., Motovilov, V. A., & Shcherbinin, S. V. (2000). Complex processing of pyrite wastes from ore-dressing plants by nanosecond pulses. Doklady Earth Sciences, 373, 790–792. (In Russian).

I Egorov, I. N., & Egorov, N. Ya. (2017). Influence of grinding conditions in a hammer mill on the efficiency of the process and the structural characteristics of the powder. International Research Journal, 11(65), 31-36. doi:10.23670/IRJ.2017.65.073.

Hu, H. xiao, Deng, C., & Chen, W. (2022). The effect of magnetization conditions on the stability of cement grout. In Case Studies in Construction Materials (Vol. 16). doi:10.1016/j.cscm.2022.e01016.

Kim, H. S., Park, D. W., Oh, G. H., & Kim, H. S. (2021). Non-destructive evaluation of cement hydration with pulsed and continuous Terahertz electro-magnetic waves. Optics and Lasers in Engineering, 138. doi:10.1016/j.optlaseng.2020.106414.

Chuewangkam, N., Pinitsoontorn, S., & Chindaprasirt, P. (2019). Properties of NdFeB magnetic cement. Cement and Concrete Composites, 103, 204–212. doi:10.1016/j.cemconcomp.2019.05.010.

Hlaváěek, I., Chleboun, J., & Babuška, I. (2004). Chapter VIII Hencky’s and deformation theories of plasticity. In North-Holland Series in Applied Mathematics and Mechanics, 241–279, Elsevier, Amsterdam, Netherlands. doi:10.1016/S0167-5931(04)80012-3.

Радайкин, О., & Radaikin, O. (2019). Comparative Analysis of Various Diagrams of Concrete Deformation According to the Criterion of Energy Consumption for Deformation and Destruction. Bulletin of Belgorod State Technological University Named after. V. G. Shukhov, 4(10), 29–39. doi:10.34031/article_5db33945315bb4.76965991. (In Russian).

Panteleev, I., Mubassarova, V., Damaskinskaya, E., Naimark, O., & Bogomolov, L. (2015). Influence of weak electric field on spatial-temporal dynamics of damage evolution during granite deformation. AIP Conference Proceedings. doi:10.1063/1.4932867.

Ioffe, A. F. (1936). Report on the work of the Physico-Technical Institute. Uspekhi Fizicheskih Nauk, 16(7), 847–871. doi:10.3367/ufnr.0016.193607c.0847.

Lapshin, O. V., Boldyreva, E. V., & Boldyrev, V. V. (2021). Role of Mixing and Milling in Mechanochemical Synthesis (Review). Russian Journal of Inorganic Chemistry, 66(3), 433–453. doi:10.1134/S0036023621030116.

Jeong, J., & Voyiadjis, G. Z. (2022). A physics-based crystal plasticity model for the prediction of the dislocation densities in micropillar compression. Journal of the Mechanics and Physics of Solids, 167. doi:10.1016/j.jmps.2022.105006.

Skogvoll, V., Angheluta, L., Skaugen, A., Salvalaglio, M., & Viñals, J. (2022). A phase field crystal theory of the kinematics of dislocation lines. Journal of the Mechanics and Physics of Solids, 166. doi:10.1016/j.jmps.2022.104932.

Lindroos, M., Pinomaa, T., Ammar, K., Laukkanen, A., Provatas, N., & Forest, S. (2022). Dislocation density in cellular rapid solidification using phase field modeling and crystal plasticity. International Journal of Plasticity, 148, 103139. doi:10.1016/j.ijplas.2021.103139.

Blaschke, D. N. (2019). Velocity dependent dislocation drag from phonon wind and crystal geometry. Journal of Physics and Chemistry of Solids, 124, 24–35. doi:10.1016/j.jpcs.2018.08.032.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-05-015


  • There are currently no refbacks.

Copyright (c) 2023 Ruslan Ibragimov, Evgenij Korolev, Evgeny Khorkov, Linur Gimranov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.