An Intelligent Approach for Predicting Mechanical Properties of High-Volume Fly Ash (HVFA) Concrete
Abstract
Doi: 10.28991/CEJ-2023-09-09-04
Full Text: PDF
Keywords
References
Mrowiec, B. (2018). Plastics in the circular economy (CE). Environmental Protection and Natural Resources, 29(4), 16–19. doi:10.2478/oszn-2018-0017.
Adamu, M., Trabanpruek, P., Jongvivatsakul, P., Likitlersuang, S., & Iwanami, M. (2021). Mechanical performance and optimization of high-volume fly ash concrete containing plastic wastes and graphene nanoplatelets using response surface methodology. Construction and Building Materials, 308, 125085. doi:10.1016/j.conbuildmat.2021.125085.
Adamu, M., Trabanpruek, P., Limwibul, V., Jongvivatsakul, P., Iwanami, M., & Likitlersuang, S. (2022). Compressive Behavior and Durability Performance of High-Volume Fly-Ash Concrete with Plastic Waste and Graphene Nanoplatelets by Using Response-Surface Methodology. Journal of Materials in Civil Engineering, 34(9), 4022222. doi:10.1061/(asce)mt.1943-5533.0004377.
United Nation Environment Programme. (2022). Our planet is choking on plastic - Beat Plastic Pollution. United Nations, New York, United States. Available online: https://www.unep.org/interactives/beat-plastic-pollution/ (accessed on July 2023).
Denta, S. M. (2022). End Plastic Pollution and Plastic Waste-Regulations and Collaboration. Copenhagen Business School, CBS LAW Research Paper.
Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, 113, 157–175. doi:10.1016/j.wasman.2020.05.048.
Steyn, Z. C., Babafemi, A. J., Fataar, H., & Combrinck, R. (2021). Concrete containing waste recycled glass, plastic and rubber as sand replacement. Construction and Building Materials, 269, 121242. doi:10.1016/j.conbuildmat.2020.121242.
Jain, A., Siddique, S., Gupta, T., Jain, S., Sharma, R. K., & Chaudhary, S. (2021). Evaluation of concrete containing waste plastic shredded fibers: Ductility properties. Structural Concrete, 22(1), 566–575. doi:10.1002/suco.201900512.
Anandan, S., & Alsubih, M. (2021). Mechanical strength characterization of plastic fiber reinforced cement concrete composites. Applied Sciences (Switzerland), 11(2), 1–21. doi:10.3390/app11020852.
Khalid, F. S., Irwan, J. M., Ibrahim, M. H. W., Othman, N., & Shahidan, S. (2018). Performance of plastic wastes in fiber-reinforced concrete beams. Construction and Building Materials, 183, 451–464. doi:10.1016/j.conbuildmat.2018.06.122.
Nistratov, A. V., Klimenko, N. N., Pustynnikov, I. V., & Vu, L. K. (2022). Thermal Regeneration and Reuse of Carbon and Glass Fibers from Waste Composites. Emerging Science Journal, 6(5), 967-984. doi:10.28991/ESJ-2022-06-05-04.
Záleská, M., Pavlíková, M., Pokorný, J., Jankovský, O., Pavlík, Z., & Černý, R. (2018). Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Construction and Building Materials, 180, 1–11. doi:10.1016/j.conbuildmat.2018.05.250.
Ruiz-Herrero, J. L., Velasco Nieto, D., López-Gil, A., Arranz, A., Fernández, A., Lorenzana, A., Merino, S., De Saja, J. A., & Rodríguez-Pérez, M. Á. (2016). Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Construction and Building Materials, 104, 298–310. doi:10.1016/j.conbuildmat.2015.12.005.
Farajzadehha, S., Ziaei Moayed, R., & Mahdikhani, M. (2020). Comparative study on uniaxial and triaxial strength of plastic concrete containing nano silica. Construction and Building Materials, 244, 118212. doi:10.1016/j.conbuildmat.2020.118212.
Ahmad, F., Qureshi, M. I., & Ahmad, Z. (2022). Influence of nano graphite platelets on the behavior of concrete with E-waste plastic coarse aggregates. Construction and Building Materials, 316, 125980. doi:10.1016/j.conbuildmat.2021.125980.
Punitha, V., Sakthieswaran, N., & Babu, O. G. (2020). Experimental investigation of concrete incorporating HDPE plastic waste and metakaolin. Materials Today: Proceedings, 37(Part 2), 1032–1035. doi:10.1016/j.matpr.2020.06.288.
Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 122400. doi:10.1016/j.conbuildmat.2021.122400.
Liu, T., Nafees, A., khan, S., Javed, M. F., Aslam, F., Alabduljabbar, H., Xiong, J. J., Ijaz Khan, M., & Malik, M. Y. (2022). Comparative study of mechanical properties between irradiated and regular plastic waste as a replacement of cement and fine aggregate for manufacturing of green concrete. Ain Shams Engineering Journal, 13(2), 101563. doi:10.1016/j.asej.2021.08.006.
Khan, M. I., Sutanto, M. H., Napiah, M. Bin, Khan, K., & Rafiq, W. (2021). Design optimization and statistical modeling of cementitious grout containing irradiated plastic waste and silica fume using response surface methodology. Construction and Building Materials, 271, 121504. doi:10.1016/j.conbuildmat.2020.121504.
Çolak, A. B., Akçaözoğlu, K., Akçaözoğlu, S., & Beller, G. (2021). Artificial Intelligence Approach in Predicting the Effect of Elevated Temperature on the Mechanical Properties of PET Aggregate Mortars: An Experimental Study. Arabian Journal for Science and Engineering, 46(5), 4867–4881. doi:10.1007/s13369-020-05280-1.
Çelik, F., Çolak, A. B., Yıldız, O., & Bozkır, S. M. (2022). An Experimental Investigation on Workability and Bleeding Features. ACI Materials Journal, 119(5), 63–76. doi:10.14359/51735949.
Çolak, A. B., Yıldız, O., Çelik, F., & Bozkır, S. M. (2022). Developing Prediction Model on Workability Parameters of Ultrasonicated Nano Silica (n-SiO2) and Fly Ash Added Cement-Based Grouts by Using Artificial Neural Networks. Advances in Civil Engineering Materials, 11(1), 20210124. doi:10.1520/acem20210124.
Rezvan, S., Moradi, M. J., Dabiri, H., Daneshvar, K., Karakouzian, M., & Farhangi, V. (2023). Application of Machine Learning to Predict the Mechanical Characteristics of Concrete Containing Recycled Plastic-Based Materials. Applied Sciences (Switzerland), 13(4), 2033. doi:10.3390/app13042033.
Sau, D., Hazra, T., & Shiuly, A. (2023). Assessment of Sustainable Green Concrete Properties Using Recycled Plastic Waste as Replacement for Fine Aggregate Using Machine Learning Technique. Composites: Mechanics, Computations, Applications, 14(2), 1–12. doi:10.1615/COMPMECHCOMPUTAPPLINTJ.2022044775.
Ofuyatan, O. M., Agbawhe, O. B., Omole, D. O., Igwegbe, C. A., & Ighalo, J. O. (2022). RSM and ANN modelling of the mechanical properties of self-compacting concrete with silica fume and plastic waste as partial constituent replacement. Cleaner Materials, 4, 100065. doi:10.1016/j.clema.2022.100065.
Nafees, A., Khan, S., Javed, M. F., Alrowais, R., Mohamed, A. M., Mohamed, A., & Vatin, N. I. (2022). Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF. Polymers, 14(8), 1583. doi:10.3390/polym14081583.
Jamii, J., Mansouri, M., Trabelsi, M., Mimouni, M. F., & Shatanawi, W. (2022). Effective artificial neural network-based wind power generation and load demand forecasting for optimum energy management. Frontiers in Energy Research, 10. doi:10.3389/fenrg.2022.898413.
Rehman, K. U., Çolak, A. B., & Shatanawi, W. (2022). Artificial Neural Networking (ANN) Model for Convective Heat Transfer in Thermally Magnetized Multiple Flow Regimes with Temperature Stratification Effects. Mathematics, 10(14), 2394. doi:10.3390/math10142394.
Rehman, K. U., Shatanawi, W., & Çolak, A. B. (2023). Artificial neural networking estimation of skin friction coefficient at cylindrical surface: a Casson flow field. European Physical Journal Plus, 138(1), 1–15. doi:10.1140/epjp/s13360-023-03704-z.
Quadros, J. D., Nagpal, C., Khan, S. A., Aabid, A., & Baig, M. (2022). Investigation of suddenly expanded flows at subsonic Mach numbers using an artificial neural networks approach. PLOS ONE, 17(10), e0276074. doi:10.1371/journal.pone.0276074.
Moriyama, M., Takeuchi, M., Uwate, Y., & Nishio, Y. (2016). Firefly Algorithm combined with chaotic map. IEEE Workshop on Nonlinear Circuit Networks, 9-10 December, 2016, Tokushima, Japan.
Umar, I. K., Gökçekuş, H., & Nourani, V. (2022). An intelligent soft computing technique for prediction of vehicular traffic noise. Arabian Journal of Geosciences, 15(19), 1571. doi:10.1007/s12517-022-10858-0.
Muthukumar, M., Mohan, D., & Rajendran, M. (2003). Optimization of mix proportions of mineral aggregates using Box Behnken design of experiments. Cement and Concrete Composites, 25(7), 751–758. doi:10.1016/S0958-9465(02)00116-6.
Wang, W. C., Xu, D. M., Chau, K. W., & Chen, S. (2013). Improved annual rainfall-runoff forecasting using PSO-SVM model based on EEMD. Journal of Hydroinformatics, 15(4), 1377–1390. doi:10.2166/hydro.2013.134.
Yasar, A., Bilgili, M., & Simsek, E. (2012). Water Demand Forecasting Based on Stepwise Multiple Nonlinear Regression Analysis. Arabian Journal for Science and Engineering, 37(8), 2333–2341. doi:10.1007/s13369-012-0309-z.
Adamu, M., Çolak, A. B., Ibrahim, Y. E., Haruna, S. I., & Hamza, M. F. (2023). Prediction of Mechanical Properties of Rubberized Concrete Incorporating Fly Ash and Nano Silica by Artificial Neural Network Technique. Axioms, 12(1), 81. doi:10.3390/axioms12010081.
Adamu, M., Haruna, S. I., Malami, S. I., Ibrahim, M. N., Abba, S. I., & Ibrahim, Y. E. (2022). Prediction of compressive strength of concrete incorporated with jujube seed as partial replacement of coarse aggregate: a feasibility of Hammerstein–Wiener model versus support vector machine. Modeling Earth Systems and Environment, 8(3), 3435–3445. doi:10.1007/s40808-021-01301-6.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research Atmospheres, 106(D7), 7183–7192. doi:10.1029/2000JD900719.
Yaseen, Z. M., Deo, R. C., Hilal, A., Abd, A. M., Bueno, L. C., Salcedo-Sanz, S., & Nehdi, M. L. (2018). Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Advances in Engineering Software, 115, 112–125. doi:10.1016/j.advengsoft.2017.09.004.
Zhu, S., & Heddam, S. (2020). Prediction of dissolved oxygen in urban rivers at the three Gorges reservoir, China: Extreme learning machines (ELM) versus artificial neural network (ANN). Water Quality Research Journal, 55(1), 106–118. doi:10.2166/WQRJ.2019.053.
Haruna, S. I., Malami, S. I., Adamu, M., Usman, A. G., Farouk, A., Ali, S. I. A., & Abba, S. I. (2021). Compressive Strength of Self-Compacting Concrete Modified with Rice Husk Ash and Calcium Carbide Waste Modeling: A Feasibility of Emerging Emotional Intelligent Model (EANN) Versus Traditional FFNN. Arabian Journal for Science and Engineering, 46(11), 11207–11222. doi:10.1007/s13369-021-05715-3.
DOI: 10.28991/CEJ-2023-09-09-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Musa Adamu, A. Batur ÇOLAK, Ibrahim Khalil Umar, Yasser E Ibrahim, Mukhtar Fatihu Hamza
This work is licensed under a Creative Commons Attribution 4.0 International License.