The Application of Neural Networks to Predict the Water Evaporation Percentage and the Plastic Shrinkage Size of Self-Compacting Concrete Structure
Abstract
Doi: 10.28991/CEJ-2024-010-01-07
Full Text: PDF
Keywords
References
Ahmad, S., & Umar, A. (2018). Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres. Journal of Building Engineering, 17, 65–74. doi:10.1016/j.jobe.2018.02.002.
Ahmad, S., Umar, A., Masood, A., & Nayeem, M. (2019). Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume. Advances in Concrete Construction, 7(1), 31–37. doi:10.12989/acc.2019.7.1.031.
Loukili, A. (2013). Self-compacting concrete. John Wiley & Sons, Hoboken, United States.
Sayahi, F., Emborg, M., & Hedlund, H. (2017). Effect of water-cement ratio on plastic shrinkage cracking in self-compacting concrete. 23th Symposium on Nordic Concrete Research & Development, 21-23 August, 2017, Aalborg, Denmark.
Alaj, A., Krelani, V., & Numao, T. (2023). Effect of Class F Fly Ash on Strength Properties of Concrete. Civil Engineering Journal (Iran), 9(9), 2249–2258. doi:10.28991/CEJ-2023-09-09-011.
Almohammad-albakkar, M., Behfarnia, K., & Mousavi, H. (2022). Estimation of drying shrinkage in self-compacting concrete containing micro- and nano-silica using appropriate models. Innovative Infrastructure Solutions, 7(5), 324. doi:10.1007/s41062-022-00914-9.
Khoa, H. N., & Cường, N. H. (2011). Specification of effective methods to well-maintain concrete in hot-and-humid climate. Journal of Construction Science and Technology (KHCNXD) - University of Social Sciences and Humanities, 5(1), 33-39. (In Vietnamese).
Khoa, H. N., Vu, N. T. (2015). Curing monolithic concrete by membrane in the climate condition of Quang Nam - Da Nang region. Journal of Structural Engineering and Construction Technology, 17, 30–42.
Uno, P. J. (1998). Plastic shrinkage cracking and evaporation formulas. ACI Materials Journal, 95(4), 365–375. doi:10.14359/379.
Nguyen, D.-B., Wu, C.-J., & Liao, W.-C. (2023). Shrinkage Behavior and Prediction Model of Self-Compacting Concrete. Journal of Materials in Civil Engineering, 35(12), 4023454. doi:10.1061/jmcee7.mteng-15808.
Li, Y., & Li, J. (2014). Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete. Construction and Building Materials, 53, 511–516. doi:10.1016/j.conbuildmat.2013.12.010.
Turcry, P., & Loukili., A. (2006). Evaluation of Plastic Shrinkage Cracking of Self-Consolidating Concrete. ACI Materials Journal, 103(4), 272-280. doi:10.14359/16611.
Onyelowe, K. C., Gnananandarao, T., Ebid, A. M., Mahdi, H. A., Razzaghian Ghadikolaee, M., & Al-Ajamee, M. (2022). Evaluating the Compressive Strength of Recycled Aggregate Concrete Using Novel Artificial Neural Network. Civil Engineering Journal (Iran), 8(8), 1679–1693. doi:10.28991/CEJ-2022-08-08-011.
Vakhshouri, B., & Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13-22. doi:10.1016/j.neucom.2017.09.099.
Faraj, R. H., Mohammed, A. A., Mohammed, A., Omer, K. M., & Ahmed, H. U. (2022). Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages. Engineering with Computers, 38(3), 2365–2388. doi:10.1007/s00366-021-01385-9.
Chang, W., & Zheng, W. (2022). Compressive strength evaluation of concrete confined with spiral stirrups by using adaptive neuro-fuzzy inference system (ANFIS). Soft Computing, 26(21), 11873–11889. doi:10.1007/s00500-022-07001-2.
Wang, K., Shah, S. P., & Phuaksuk, P. (2002). Plastic Shrinkage Cracking in Concrete Materials—Influence of Fly Ash and Fibers. ACI Materials Journal, 98(6). doi:10.14359/10846.
Erten, E., Yalçınkaya, Ç., Beglarigale, A., Yiğiter, H., & Yazıcı, H. (2017). Effect of early age shrinkage cracks on corrosion of embedded reinforcement in ultra-high performance concrete with/without fibres. Journal of Gazi University Faculty of Engineering and Architecture, 32(4), 1347–1364. doi:10.17341/gazimmfd.369857. (In Turkish).
Boshoff, W. P., & Combrinck, R. (2013). Modelling the severity of plastic shrinkage cracking in concrete. Cement and Concrete Research, 48, 34–39. doi:10.1016/j.cemconres.2013.02.003.
Ghoddousi, P., Abbasi, A. M., Shahrokhinasab, E., & Abedin, M. (2019). Prediction of Plastic Shrinkage Cracking of Self-Compacting Concrete. Advances in Civil Engineering, 2019, 1–7. doi:10.1155/2019/1296248.
Qi, C., Weiss, J., & Olek, J. (2003). Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified Weibull function. Materials and Structures, 36(6), 386–395. doi:10.1007/bf02481064.
Nguyen, C. H., & Tran, L. H. (2023). Applications of Neural Network and Neuro-Fuzzy Network to Estimate the Parameters of Self-Compacting Concrete. International Journal of GEOMATE, 24(106), 120–129. doi:10.21660/2023.106.3656.
Zhang, X., Dai, C., Li, W., & Chen, Y. (2023). Prediction of compressive strength of recycled aggregate concrete using machine learning and Bayesian optimization methods. Frontiers in Earth Science, 11. doi:10.3389/feart.2023.1112105.
Thirumalai Raja, K., Jayanthi, N., Leta Tesfaye, J., Nagaprasad, N., Krishnaraj, R., & Kaushik, V. S. (2022). Using an Artificial Neural Network to Validate and Predict the Physical Properties of Self-Compacting Concrete. Advances in Materials Science and Engineering, 2022, 1–10. doi:10.1155/2022/1206512.
Haykin, S. (2009). Neural Networks and Learning Machines (3rd Ed.). Pearson Education India, Bengaluru, India.
Ojeda, J. M. P., Cayatopa-Calderón, B. A., Huatangari, L. Q., Tineo, J. L. P., Pino, M. E. M., & Pintado, W. R. (2023). Convolutional Neural Network for Predicting Failure Type in Concrete Cylinders During Compression Testing. Civil Engineering Journal (Iran), 9(9), 2105–2119. doi:10.28991/CEJ-2023-09-09-01.
Linh, T. H. (2002). The modification of TSK network in neuro-fuzzy systems. XXV SPETO, Ustron, 525-528.
el Asri, Y., Benaicha, M., Zaher, M., & Hafidi Alaoui, A. (2022). Prediction of the compressive strength of self-compacting concrete using artificial neural networks based on rheological parameters. Structural Concrete, 23(6), 3864–3876. doi:10.1002/suco.202100796.
DOI: 10.28991/CEJ-2024-010-01-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Linh Hoai Tran, Cuong Hung Nguyen
This work is licensed under a Creative Commons Attribution 4.0 International License.