Utilization of Ionic Organic Polymer to Improve Performance and Properties of Problematic Soils
Downloads
Doi: 10.28991/CEJ-2023-09-12-05
Full Text: PDF
Downloads
[2] Rezaei, M., Ajalloeian, R., & Ghafoori, M. (2012). Geotechnical Properties of Problematic Soils Emphasis on Collapsible Cases. International Journal of Geosciences, 03(01), 105–110. doi:10.4236/ijg.2012.31012.
[3] Umesh, T. S., Dinesh, S. V., & Sivapullaiah, P. V. (2011). Characterization of Dispersive Soils. Materials Sciences and Applications, 02(06), 629–633. doi:10.4236/msa.2011.26085.
[4] Li, Z., Zhu, Z., Zhao, Y., Zeng, C., & Zhang, P. (2022). Experimental Investigation on the Diffusion Law of Polymer Slurry Grouted in Sand. Polymers, 14(17), 3635. doi:10.3390/polym14173635.
[5] Katha, B. R. (2002). Shrinkage strain characterization of expansive soils using digital imaging technology. Master Thesis, The University of Texas at Arlington, Arlington, United States.
[6] Houston, S. L., Houston, W. N., Zapata, C. E., & Lawrence, C. (2001). Geotechnical engineering practice for collapsible soils. Unsaturated Soil Concepts and Their Application in Geotechnical Practice. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-015-9775-3_6.
[7] Cerato, A. B., Miller, G. A., & Hajjat, J. A. (2009). Influence of Clod-Size and Structure on Wetting-Induced Volume Change of Compacted Soil. Journal of Geotechnical and Geoenvironmental Engineering, 135(11), 1620–1628. doi:10.1061/(asce)gt.1943-5606.0000146.
[8] Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage Learning, Boston, United States.
[9] Basma, A. A., & Tuncer, E. R. (1994). Evaluation and control of collapsible soils. Journal of Geotechnical Engineering, 120(5), 925–929. doi:10.1061/(ASCE)0733-9410(1994)120:5(925).
[10] Abdelaziz, T. (2007). Response of Shallow Foundations resting on Collapsible Soil. Alexandia University, Bab Sharqi, Egypt.
[11] ECP-202. (2012). Egyptian Code for Soil Mechanics”Design and Construction of Foundations. Housing and Building Research centre, Giza, Egypt.
[12] Latifi, N., Marto, A., & Eisazadeh, A. (2016). Experimental Investigations on Behaviour of Strip Footing Placed on Chemically Stabilised Backfills and Flexible Retaining Walls. Arabian Journal for Science and Engineering, 41(10), 4115–4126. doi:10.1007/s13369-016-2104-8.
[13] Oldham, J. C., Eaves, R. C., & White, D. W. (1977). Materials evaluated as potential soil stabilizers. Miscellaneous Paper S-77–15. US Army Engineer Waterways Experiment Station, Vicksburg, United States.
[14] Waheed, M., & Asmael, N. (2018). Improvement of engineering soil properties using non -traditional additives. MATEC Web of Conferences, 162, 01027. doi:10.1051/matecconf/201816201027.
[15] Blanck, G., Cuisinier, O., & Masrouri, F. (2013). Soil treatment with organic non-traditional additives for the improvement of earthworks. Acta Geotechnica, 9(6), 1111–1122. doi:10.1007/s11440-013-0251-6.
[16] Latifi, N., Marto, A., & Eisazadeh, A. (2015). Analysis of strength development in non-traditional liquid additive-stabilized laterite soil from macro- and micro-structural considerations. Environmental Earth Sciences, 73(3), 1133–1141. doi:10.1007/s12665-014-3468-2.
[17] Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1), 58–66. doi:10.1061/(asce)0899-1561(2007)19:1(58).
[18] Sojka, R. E., Bjorneberg, D. L., Entry, J. A., Lentz, R. D., & Orts, W. J. (2007). Polyacrylamide in Agriculture and Environmental Land Management. Advances in Agronomy, 92, 75–162. doi:10.1016/S0065-2113(04)92002-0.
[19] Al-Khanbashi, A., Mohamed, A. M.O., Moet, A. and Hadi, B. (2000). Stabilization of desert sand using water-born polymers. In Proc. of the First International Conference on Geotechnical, Geo-environmental Engineering and Management in arid Lands 143 – 148, Al-Ain, United Arab Emirates.
[20] Yang, Q. wen, Pei, X. jun, & Huang, R. qiu. (2019). Impact of polymer mixtures on the stabilization and erosion control of silty sand slope. Journal of Mountain Science, 16(2), 470–485. doi:10.1007/s11629-018-4905-6.
[21] Gu, B., & Doner, H. E. (1992). The interaction of polysaccharides with silver hill illite. Clays and Clay Minerals, 40(2), 151–156. doi:10.1346/CCMN.1992.0400203.
[22] Azzam, W. R. (2014). Utilization of polymer stabilization for improvement of clay microstructures. Applied Clay Science, 93–94, 94–101. doi:10.1016/j.clay.2014.03.006.
[23] Georgees, R. N., Hassan, R. A., & Evans, R. P. (2017). A potential use of a hydrophilic polymeric material to enhance durability properties of pavement materials. Construction and Building Materials, 148, 686–695. doi:10.1016/j.conbuildmat.2017.05.086.
[24] Liu, J., Bai, Y., Song, Z., Lu, Y., Qian, W., & Kanungo, D. P. (2018). Evaluation of strength properties of sand modified with organic polymers. Polymers, 10(3), 287. doi:10.3390/polym10030287.
[25] Latifi, N., Horpibulsuk, S., Meehan, C. L., Abd Majid, M. Z., Tahir, M. M., & Mohamad, E. T. (2017). Improvement of Problematic Soils with Biopolymer-An Environmentally Friendly Soil Stabilizer. Journal of Materials in Civil Engineering, 29(2), 4016204. doi:10.1061/(asce)mt.1943-5533.0001706.
[26] Lora, J. H., & Glasser, W. G. (2002). Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment, 10(1–2), 39–48. doi:10.1023/A:1021070006895.
[27] Sukmak, P., Horpibulsuk, S., & Shen, S. L. (2013). Strength development in clay-fly ash geopolymer. Construction and Building Materials, 40, 566–574. doi:10.1016/j.conbuildmat.2012.11.015.
[28] Hasan, S. H., & Shafiqu, Q. S. (2017). Expansive Clayey Soil Improvement Using Polyethylene High Density Polymer. ARPN Journal of Engineering and Applied Sciences, 12(24), 7224-7232.
[29] Wang, Y., Liu, J., Lin, C., Qi, C., Chen, Z., Che, W., & Ma, K. (2022). Investigation into Mechanical Behavior of Air-Hardening Organic Polymer-Stabilized Silty Sand. Journal of Materials in Civil Engineering, 34(11), 4022305. doi:10.1061/(asce)mt.1943-5533.0004340.
[30] Mirzababaei, M., Arulrajah, A., & Ouston, M. (2017). Polymers for Stabilization of Soft Clay Soils. Procedia Engineering, 189, 25–32. doi:10.1016/j.proeng.2017.05.005.
[31] Mousavi, F., Abdi, E., & Rahimi, H. (2014). Effect of polymer stabilizer on swelling potential and CBR of forest road material. KSCE Journal of Civil Engineering, 18(7), 2064–2071. doi:10.1007/s12205-014-0137-7.
[32] Xia, W., Wang, Q., Yu, Q., Yao, M., Sun, D., Liu, J., & Wang, Z. (2023). Experimental investigation of the mechanical properties of hydrophobic polymer-modified soil subjected to freeze–thaw cycles. Acta Geotechnica, 18(7), 3623–3642. doi:10.1007/s11440-023-01804-9.
[33] Shafiqu, Q. S. M., & Hasan, S. H. (2018). Improvement an Expansive Soil using Polymethacrylate Polymer. IOP Conference Series: Materials Science and Engineering, 454, 012138. doi:10.1088/1757-899x/454/1/012138.
[34] Geng, L., Liu, Y., Xu, Q., Han, F., Yu, X., & Qin, T. (2021). Development of bio-based stabilizers and their effects on the performance of SBS-modified asphalt. Construction and Building Materials, 271, 121889. doi:10.1016/j.conbuildmat.2020.121889.
[35] ASTM D421. (2007). Standard Practice for Dry Preparation of Soil Samples for Particle-Size. ASTM International, Pennsylvania, United States.
[36] ASTM D422. (2007). Standard Test Method for Particle-Size Analysis of Soils. ASTM International, Pennsylvania, United States.
[37] ASTM D4318. (2018). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D4318-17E01.
[38] ASTM D1557. (2021). Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D1557-12R21.
[39] ASTM D5333. (1996). Standard test method for measurement of collapse potential of soils. ASTM International, Pennsylvania, United States. doi:10.1520/D5333-92R96.
[40] ASTM D3080-04. (2012). Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080-04.
[41] ASTM D1883-21. (2021). Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D1883-21.
[42] Rajoria, V., & Kaur, S. (2015). Effect of polymer stabilizer on the geotechnical properties of black cotton soil. 50th Indian Geotechnical Conference, 17-19 December, 2015, Pune, India.
[43] Dai, D., Peng, J., Wei, R., Li, L., & Lin, H. (2022). Improvement in dynamic behaviors of cement-stabilized soil by super-absorbent-polymer under cyclic loading. Soil Dynamics and Earthquake Engineering, 163, 107554. doi:10.1016/j.soildyn.2022.107554.
[44] Zhu, X., Liu, J., Xue, J., Zhang, F., Chen, Z., Hu, G., & Jiang, C. (2022). Effect of Curing Condition on the Compressive Mechanical Behavior of Clayey Soil Stabilized with Liquid Polymer. International Journal of Polymer Science, 2022. doi:10.1155/2022/9031369.
[45] Mpofu, P., Addai-Mensah, J., & Ralston, J. (2004). Flocculation and dewatering behaviour of smectite dispersions: Effect of polymer structure type. Minerals Engineering, 17(3), 411–423. doi:10.1016/j.mineng.2003.11.010.
[46] Anderson, R. L., Ratcliffe, I., Greenwell, H. C., Williams, P. A., Cliffe, S., & Coveney, P. V. (2010). Clay swelling - A challenge in the oilfield. Earth-Science Reviews, 98(3–4), 201–216. doi:10.1016/j.earscirev.2009.11.003.
[47] Bell, F. G. (2013). Engineering properties of soils and rocks. Elsevier, Amsterdam, Netherlands. doi:10.1016/C2013-0-01182-6.
[48] NAPA. (1999). Guidelines for use of HMA overlays to rehabilitate PCC pavement. National Asphalt Pavement Association (NAPA), Greenbelt, United States.
[49] Shu, H., Yu, Q., Niu, C., Liu, J., Xia, W., Sun, X., ... & Wang, Q. (2023). Effect of dry-wet cycles on the mechanical properties of saline soil solidified with sulfur-free lignin and hydrophobic polymer. Journal of Building Engineering, 107116. doi:10.1016/j.jobe.2023.107116.
[50] Tiwari, N., Satyam, N., & Singh, K. (2020). Effect of Curing on Micro-Physical Performance of Polypropylene Fiber Reinforced and Silica Fume stabilized Expansive Soil under Freezing Thawing Cycles. Scientific Reports, 10(1), 7624. doi:10.1038/s41598-020-64658-1.
[51] Chang, I., Im, J., Prasidhi, A. K., & Cho, G. C. (2015). Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65-72. doi:10.1016/j.conbuildmat.2014.10.026.
[52] Nugent, R. A., Zhang, G., & Gambrell, R. P. (2009). Effect of Exopolymers on the Liquid Limit of Clays and Its Engineering Implications. Transportation Research Record: Journal of the Transportation Research Board, 2101(1), 34–43. doi:10.3141/2101-05.
[53] Chang, I., & Cho, G. C. (2012). Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer. Construction and Building Materials, 30, 30–35. doi:10.1016/j.conbuildmat.2011.11.030.
[54] Khatami, H. R., & O'Kelly, B. C. (2013). Improving Mechanical Properties of Sand Using Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 139(8), 1402–1406. doi:10.1061/(asce)gt.1943-5606.0000861.
[55] Theng, B. K. G. (1982). Clay-Polymer Interactions: Summary and Perspectives. Clays and Clay Minerals, 30(1), 1–10. doi:10.1346/ccmn.1982.0300101.
[56] Hussain, F., Hojjati, M., Okamoto, M., & Gorga, R. E. (2006). Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. Journal of Composite Materials, 40(17), 1511–1575. doi:10.1177/0021998306067321.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.