An Evaluative Review of Recycled Waste Material Utilization in High-Performance Concrete
Abstract
Doi: 10.28991/CEJ-2023-09-11-020
Full Text: PDF
Keywords
References
Esquinas, A. R., Ledesma, E. F., Otero, R., Jiménez, J. R., & Fernández, J. M. (2018). Mechanical behaviour of self-compacting concrete made with non-conforming fly ash from coal-fired power plants. Construction and Building Materials, 182, 385–398. doi:10.1016/j.conbuildmat.2018.06.094.
Aslani, F., Ma, G., Yim Wan, D. L., & Muselin, G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553–566. doi:10.1016/j.jclepro.2018.02.074.
de Brito, J., & Kurda, R. (2021). The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 281, 123558. doi:10.1016/j.jclepro.2020.123558.
Wong, L. S., Oweida, A. F. M., Kong, S. Y., Iqbal, D. M., & Regunathan, P. (2020). The surface coating mechanism of polluted concrete by Candida ethanolica induced calcium carbonate mineralization. Construction and Building Materials, 257, 119482. doi:10.1016/j.conbuildmat.2020.119482.
Wong, L. S., Chandran, S. N., Rajasekar, R. R., & Kong, S. Y. (2022). Pozzolanic characterization of waste newspaper ash as a supplementary cementing material of concrete cylinders. Case Studies in Construction Materials, 17, 1342. doi:10.1016/j.cscm.2022.e01342.
Şanal, İ. (2018). Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete. Greenhouse Gases: Science and Technology, 8(2), 366–378. doi:10.1002/ghg.1748.
Zidol, A., Tognonvi, M. T., & Tagnit-Hamou, A. (2021). Concrete incorporating glass powder in aggressive environments. ACI Materials Journal, 118(2), 43–52. doi:10.14359/51729326.
Hamada, H. M., Skariah Thomas, B., Tayeh, B., Yahaya, F. M., Muthusamy, K., & Yang, J. (2020). Use of oil palm shell as an aggregate in cement concrete: A review. Construction and Building Materials, 265, 120357. doi:10.1016/j.conbuildmat.2020.120357.
Hamada, H. M., Tayeh, B. A., Al-Attar, A., Yahaya, F. M., Muthusamy, K., & Humada, A. M. (2020). The present state of the use of eggshell powder in concrete: A review. Journal of Building Engineering, 32, 101583. doi:10.1016/j.jobe.2020.101583.
Zhang, W., Liu, X., Huang, Y., & Tong, M. N. (2022). Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars. Archives of Civil and Mechanical Engineering, 22(4), 1–20. doi:10.1007/s43452-022-00493-7.
zhang, W., & Huang, Y. (2022). Three-dimensional numerical investigation of mixed-mode debonding of FRP-concrete interface using a cohesive zone model. Construction and Building Materials, 350, 128818. doi:10.1016/j.conbuildmat.2022.128818.
Huang, H., Huang, M., Zhang, W., Pospisil, S., & Wu, T. (2020). Experimental Investigation on Rehabilitation of Corroded RC Columns with BSP and HPFL under Combined Loadings. Journal of Structural Engineering, 146(8), 4020157. doi:10.1061/(asce)st.1943-541x.0002725.
Hu, Z., Shi, T., Cen, M., Wang, J., Zhao, X., Zeng, C., Zhou, Y., Fan, Y., Liu, Y., & Zhao, Z. (2022). Research progress on lunar and Martian concrete. Construction and Building Materials, 343, 128117. doi:10.1016/j.conbuildmat.2022.128117.
Yuan, J., Lei, D., Shan, Y., Tong, H., Fang, X., & Zhao, J. (2022). Direct Shear Creep Characteristics of Sand Treated with Microbial-Induced Calcite Precipitation. International Journal of Civil Engineering, 20(7), 763–777. doi:10.1007/s40999-021-00696-8.
Lan, Y., Zheng, B., Shi, T., Ma, C., Liu, Y., & Zhao, Z. (2022). Crack resistance properties of carbon nanotube-modified concrete. Magazine of Concrete Research, 74(22), 1165–1175. doi:10.1680/jmacr.21.00227.
Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D., & Li, Y. (2022). Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation. Soil Dynamics and Earthquake Engineering, 161, 107419. doi:10.1016/j.soildyn.2022.107419.
Shi, T., Liu, Y., Zhang, Y., Lan, Y., Zhao, Q., Zhao, Y., & Wang, H. (2022). Calcined Attapulgite Clay as Supplementary Cementing Material: Thermal Treatment, Hydration Activity and Mechanical Properties. International Journal of Concrete Structures and Materials, 16(1), 1–10. doi:10.1186/s40069-022-00499-8.
Zhang, C., & Ali, A. (2021). The advancement of seismic isolation and energy dissipation mechanisms based on friction. Soil Dynamics and Earthquake Engineering, 146, 106746. doi:10.1016/j.soildyn.2021.106746.
Gong, P., Wang, D., Zhang, C., Wang, Y., Jamili-Shirvan, Z., Yao, K., & Wang, X. (2022). Corrosion behavior of TiZrHfBeCu(Ni) high-entropy bulk metallic glasses in 3.5 wt. % NaCl. NPJ Materials Degradation, 6(1), 1–14. doi:10.1038/s41529-022-00287-5.
Sharma, D., Sharma, S., & Goyal, A. (2016). Utilization of waste foundry slag and alccofine for developing high strength concrete. International Journal of Electrochemical Science, 11(4), 3190–3205. doi:10.20964/110403190.
ACI 363R-92. (1992). Report on High-Strength Concrete. Reported by ACI Committee 363, American Concrete Institute, Detroit, United States.
Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. doi:10.1016/j.cemconcomp.2008.12.010.
Allwood, J. M., Cullen, J. M., & Milford, R. L. (2010). Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental Science and Technology, 44(6), 1888–1894. doi:10.1021/es902909k.
Ali, M. B., Saidur, R., & Hossain, M. S. (2011). A review on emission analysis in cement industries. Renewable and Sustainable Energy Reviews, 15(5), 2252–2261. doi:10.1016/j.rser.2011.02.014.
El Mir, A., & Nehme, S. G. (2017). Utilization of industrial waste perlite powder in self-compacting concrete. Journal of Cleaner Production, 156, 507–517. doi:10.1016/j.jclepro.2017.04.103.
Reddy, C. S., Ratnasai, K. V., Rathish Kumar, P., & Rajesh Kumar, P. (2013). Recycled aggregate based self-compacting concrete (RASCC) for structural applications. Technical Paper Presented in RN Raikar Memorial International Conference; India Chapter of American Concrete Institute (ICACI), December, 20-21, 2013, Mumbai, India.
Zhang, P., Wan, J., Wang, K., & Li, Q. (2017). Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review. Construction and Building Materials, 148, 648–658. doi:10.1016/j.conbuildmat.2017.05.059.
Randl, N., Steiner, T., Ofner, S., Baumgartner, E., & Mészöly, T. (2014). Development of UHPC mixtures from an ecological point of view. Construction and Building Materials, 67(PART C), 373–378. doi:10.1016/j.conbuildmat.2013.12.102.
Wee, T. H., Matsunaga, Y., Watanabe, Y., & Sakai, E. (1995). Microstructure and strength properties of high strength concretes containing various mineral admixtures. Cement and Concrete Research, 25(4), 715–720. doi:10.1016/0008-8846(95)00061-G.
Baker, M. A., & Ismael, N. S. (2008). Using of Waste Materials for Production of High Performance Concrete. Journal of Techniques, 21(4).
Yuliarti, K., Susilorini, R., & Aboubakr, A. (2015). Properties of Ultra High Performance Concrete. Proceedings of International Conference on Concrete and Infrastructure 2015, 28-30 October, 2015, Semarang, Indonesia.
Meyer, C., Vishwakarma, V., Xie, X., Gou, Z., & Lawrence, T. (2002). Concrete for the new century. Association of New York City Concrete Producers Spring/Summer, New York, United States.
El-Abbasy, A. A. (2022). Production, behaviour and mechanical properties of ultra-high-performance fiber concrete – A comprehensive review. Case Studies in Construction Materials, 17, 1637. doi:10.1016/j.cscm.2022.e01637.
Gong, J., Ma, Y., Fu, J., Hu, J., Ouyang, X., Zhang, Z., & Wang, H. (2022). Utilization of fibers in ultra-high performance concrete: A review. Composites Part B: Engineering, 241, 109995. doi:10.1016/j.compositesb.2022.109995.
Wen, C., Zhang, P., Wang, J., & Hu, S. (2022). Influence of fibers on the mechanical properties and durability of ultra-high-performance concrete: A review. Journal of Building Engineering, 52, 104370. doi:10.1016/j.jobe.2022.104370.
Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, 1149. doi:10.1016/j.cscm.2022.e01149.
Ahmed, K. S., & Rana, L. R. (2023). Fresh and hardened properties of concrete containing recycled waste glass: A review. Journal of Building Engineering, 70, 1063127. doi:10.1016/j.jobe.2023.106327.
Tayeh, B. A., Saffar, D. M. A., & Alyousef, R. (2020). The Utilization of Recycled Aggregate in High Performance Concrete: A Review. Journal of Materials Research and Technology, 9(4), 8469–8481. doi:10.1016/j.jmrt.2020.05.126.
Salas_Montoya, A., Chung, C. W., & Mira_Rada, B. E. (2023). Interaction effect of recycled aggregate type, moisture state, and mixing process on the properties of high-performance concretes. Case Studies in Construction Materials, 18, 2208. doi:10.1016/j.cscm.2023.e02208.
Alyaseen, A., Poddar, A., Alahmad, H., Kumar, N., & Sihag, P. (2023). High-performance self-compacting concrete with recycled coarse aggregate: comprehensive systematic review on mix design parameters. Journal of Structural Integrity and Maintenance, 8(3), 161–178. doi:10.1080/24705314.2023.2211850.
Hamada, H., Abed, F., Alattar, A., Yahaya, F., Tayeh, B., & Aisheh, Y. I. A. (2023). Influence of palm oil fuel ash on the high strength and ultra-high performance concrete: A comprehensive review. Engineering Science and Technology, an International Journal, 45, 101492. doi:10.1016/j.jestch.2023.101492.
Tran, N. P., Nguyen, T. N., Ngo, T. D., Le, P. K., & Le, T. A. (2022). Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review. Journal of Cleaner Production, 375, 133939. doi:10.1016/j.jclepro.2022.133939.
Su, W., Liu, J., Liu, L., Chen, Z., & Shi, C. (2023). Progresses of high-performance coral aggregate concrete (HPCAC): A review. Cement and Concrete Composites, 140, 105059. doi:10.1016/j.cemconcomp.2023.105059.
Abed, M., & Nemes, R. (2019). Long-term durability of self-compacting high-performance concrete produced with waste materials. Construction and Building Materials, 212, 350–361. doi:10.1016/j.conbuildmat.2019.04.004.
Shen, P., Zheng, H., Xuan, D., Lu, J. X., & Poon, C. S. (2020). Feasible use of municipal solid waste incineration bottom ash in ultra-high performance concrete. Cement and Concrete Composites, 114, 103814. doi:10.1016/j.cemconcomp.2020.103814.
Malkhare, S. S., & Pujari, A. B. (2018). To Study the Performance of Copper Slag As Partial or Fully Replacement to Fine Aggregates in Concrete. International Journal of Research & Review, 5(5), 102.
Gonzalez-Corominas, A., & Etxeberria, M. (2014). Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates. Construction and Building Materials, 68, 618–626. doi:10.1016/j.conbuildmat.2014.07.016.
Tahwia, A. M., Essam, A., Tayeh, B. A., & Elrahman, M. A. (2022). Enhancing sustainability of ultra-high performance concrete utilizing high-volume waste glass powder. Case Studies in Construction Materials, 17, 1648. doi:10.1016/j.cscm.2022.e01648.
Amin, M., Tayeh, B. A., & Agwa, I. S. (2020). Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete. Journal of Cleaner Production, 273, 123073. doi:10.1016/j.jclepro.2020.123073.
Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra-high performance concrete. Construction and Building Materials, 25(4), 2030–2035. doi:10.1016/j.conbuildmat.2010.11.046.
Dixit, A., Verma, A., & Pang, S. D. (2021). Dual waste utilization in ultra-high performance concrete using biochar and marine clay. Cement and Concrete Composites, 120, 104049. doi:10.1016/j.cemconcomp.2021.104049.
Davraz, M., Ceylan, H., Topçu, İ. B., & Uygunoğlu, T. (2018). Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Construction and Building Materials, 165, 494–503. doi:10.1016/j.conbuildmat.2018.01.043.
Xu, K., Huang, W., Zhang, L., Fu, S., Chen, M., Ding, S., & Han, B. (2021). Mechanical properties of low-carbon ultrahigh-performance concrete with ceramic tile waste powder. Construction and Building Materials, 287, 123036. doi:10.1016/j.conbuildmat.2021.123036.
AlKhatib, A., Maslehuddin, M., & Al-Dulaijan, S. U. (2020). Development of high performance concrete using industrial waste materials and nano-silica. Journal of Materials Research and Technology, 9(3), 6696–6711. doi:10.1016/j.jmrt.2020.04.067.
Wang, J., Mu, M., & Liu, Y. (2018). Recycled cement. Construction and Building Materials, 190, 1124–1132. doi:10.1016/j.conbuildmat.2018.09.181.
Li, Y., Zeng, X., Zhou, J., Shi, Y., Umar, H. A., Long, G., & Xie, Y. (2021). Development of an eco-friendly ultra-high performance concrete based on waste basalt powder for Sichuan-Tibet Railway. Journal of Cleaner Production, 312, 127775. doi:10.1016/j.jclepro.2021.127775.
Yoo, D. Y., You, I., & Zi, G. (2021). Effects of waste liquid–crystal display glass powder and fiber geometry on the mechanical properties of ultra-high-performance concrete. Construction and Building Materials, 266, 120938. doi:10.1016/j.conbuildmat.2020.120938.
Abdellatief, M., AL-Tam, S. M., Elemam, W. E., Alanazi, H., Elgendy, G. M., & Tahwia, A. M. (2023). Development of ultra-high-performance concrete with low environmental impact integrated with metakaolin and industrial wastes. Case Studies in Construction Materials, 18, 1724. doi:10.1016/j.cscm.2022.e01724.
Yu, L., & Wu, R. (2020). Using graphene oxide to improve the properties of ultra-high-performance concrete with fine recycled aggregate. Construction and Building Materials, 259, 120657. doi:10.1016/j.conbuildmat.2020.120657.
Liu, T., Wei, H., Zou, D., Zhou, A., & Jian, H. (2020). Utilization of waste cathode ray tube funnel glass for ultra-high performance concrete. Journal of Cleaner Production, 249, 119333. doi:10.1016/j.jclepro.2019.119333.
Suzuki, M., Seddik Meddah, M., & Sato, R. (2009). Use of porous ceramic waste aggregates for internal curing of high-performance concrete. Cement and Concrete Research, 39(5), 373–381. doi:10.1016/j.cemconres.2009.01.007.
Afshinnia, K., & Rangaraju, P. R. (2016). Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Construction and Building Materials, 117, 263–272. doi:10.1016/j.conbuildmat.2016.04.072.
Qian, D., Yu, R., Shui, Z., Sun, Y., Jiang, C., Zhou, F., Ding, M., Tong, X., & He, Y. (2020). A novel development of green ultra-high performance concrete (UHPC) based on appropriate application of recycled cementitious material. Journal of Cleaner Production, 261, 121231. doi:10.1016/j.jclepro.2020.121231.
Faried, A. S., Mostafa, S. A., Tayeh, B. A., & Tawfik, T. A. (2021). Mechanical and durability properties of ultra-high performance concrete incorporated with various nano waste materials under different curing conditions. Journal of Building Engineering, 43, 102569. doi:10.1016/j.jobe.2021.102569.
Leng, Y., Rui, Y., Zhonghe, S., Dingqiang, F., Jinnan, W., Yonghuan, Y., Qiqing, L., & Xiang, H. (2023). Development of an environmental Ultra-High Performance Concrete (UHPC) incorporating carbonated recycled coarse aggregate. Construction and Building Materials, 362, 129657. doi:10.1016/j.conbuildmat.2022.129657.
Feng, J., Yang, F., & Qian, S. (2021). Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification. Construction and Building Materials, 269, 121249. doi:10.1016/j.conbuildmat.2020.121249.
Shen, P., Sun, Y., Liu, S., Jiang, Y., Zheng, H., Xuan, D., Lu, J., & Poon, C. S. (2021). Synthesis of amorphous nano-silica from recycled concrete fines by two-step wet carbonation. Cement and Concrete Research, 147, 106526. doi:10.1016/j.cemconres.2021.106526.
Esmaeili, J., & Oudah Al-Mwanes, A. (2021). A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Materials Today: Proceedings, 42, 1958–1965. doi:10.1016/j.matpr.2020.12.242.
Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 122400. doi:10.1016/j.conbuildmat.2021.122400.
Elaqra, H. A., Haloub, M. A. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, 203, 75–82. doi:10.1016/j.conbuildmat.2019.01.077.
Shen, P., Lu, L., He, Y., Rao, M., Fu, Z., Wang, F., & Hu, S. (2018). Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete. Construction and Building Materials, 162, 512–522. doi:10.1016/j.conbuildmat.2017.11.172.
Collepardi, S., Coppola, L., Troli, R., & Collepardi, M. (1997). Mechanical properties of modified reactive powder concrete. American Concrete Institute, ACI Special Publication, SP-173, 1–21. doi:10.14359/6175.
Lee, N. K., Koh, K. T., Kim, M. O., & Ryu, G. S. (2018). Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC). Cement and Concrete Research, 104, 68–79. doi:10.1016/j.cemconres.2017.11.002.
Wu, Z., Khayat, K. H., & Shi, C. (2017). Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete. Cement and Concrete Research, 95, 247–256. doi:10.1016/j.cemconres.2017.02.031.
Ling, T. C., & Poon, C. S. (2012). A comparative study on the feasible use of recycled beverage and CRT funnel glass as fine aggregate in cement mortar. Journal of Cleaner Production, 29–30, 46–52. doi:10.1016/j.jclepro.2012.02.018.
Zhao, H., Poon, C. S., & Ling, T. C. (2013). Utilizing recycled cathode ray tube funnel glass sand as river sand replacement in the high-density concrete. Journal of Cleaner Production, 51, 184–190. doi:10.1016/j.jclepro.2013.01.025.
Sharma, U., Singh, L. P., Zhan, B., & Poon, C. S. (2019). Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength. Cement and Concrete Composites, 97, 312–321. doi:10.1016/j.cemconcomp.2019.01.007.
Erdem, S., Dawson, A. R., & Thom, N. H. (2012). Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates. Cement and Concrete Research, 42(2), 291–305. doi:10.1016/j.cemconres.2011.09.015.
Tahwia, A. M., Elgendy, G. M., & Amin, M. (2022). Mechanical properties of affordable and sustainable ultra-high-performance concrete. Case Studies in Construction Materials, 16, 1069. doi:10.1016/j.cscm.2022.e01069.
Tahwia, A. M., El-Far, O., & Amin, M. (2022). Characteristics of sustainable high strength concrete incorporating eco-friendly materials. Innovative Infrastructure Solutions, 7(1), 1–13. doi:10.1007/s41062-021-00609-7.
Jing, R., Liu, Y., & Yan, P. (2021). Uncovering the effect of fly ash cenospheres on the macroscopic properties and microstructure of ultra-high-performance concrete (UHPC). Construction and Building Materials, 286, 122977. doi:10.1016/j.conbuildmat.2021.122977.
Liu, J., Shi, C., & Wu, Z. (2019). Hardening, microstructure, and shrinkage development of UHPC: A review. Journal of Asian Concrete Federation, 5(2), 1–19. doi:10.18702/acf.2019.12.5.2.1.
Yalçınkaya, Ç., & Çopuroğlu, O. (2021). Hydration heat, strength and microstructure characteristics of UHPC containing blast furnace slag. Journal of Building Engineering, 34, 101915. doi:10.1016/j.jobe.2020.101915.
Abdulkareem, O. M., Fraj, A. Ben, Bouasker, M., Khouchaf, L., & Khelidj, A. (2021). Microstructural investigation of slag-blended UHPC: The effects of slag content and chemical/thermal activation. Construction and Building Materials, 292, 123455. doi:10.1016/j.conbuildmat.2021.123455.
DOI: 10.28991/CEJ-2023-09-11-020
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Leong Sing Wong
This work is licensed under a Creative Commons Attribution 4.0 International License.