Investigating the Influence of Rigden Void of Fillers on the Moisture Damage of Asphalt Mixtures

Jirat Wuttisombatjaroen, Nithinan Hemnithi, Preeda Chaturabong


Moisture damage and bond loss are major factors in pavement degradation, often stemming from excessive moisture accumulation due to weather events. Water infiltrates the gap between asphalt binder and aggregate, weakening the asphalt bond. Rigden Void (RV) has emerged as a crucial parameter in assessing the susceptibility of asphalt mastic-aggregate systems to moisture-induced damage. However, numerous waste natural fillers have been researched as potential aggregate filler replacements, yet their role in moisture damage remains unexplored. Therefore, this study aimed to understand how different fillers, including waste natural materials like coconut peat and bagasse, affect asphalt mixture performance and moisture damage. Results showed that Rigden Voids were positively correlated with pore size and negatively correlated with surface area. Larger pores contributed to higher Rigden Voids, while greater surface areas led to lower values. Limestone had the highest Rigden Void percentage due to its larger pore size and lower surface area. The research also explored contact parameters between fillers and asphalt, revealing varying interactions based on filler and asphalt types. Moisture damage testing demonstrated that all mixtures, both dense and porous, displayed good resistance to moisture damage. The correlation analysis between Rigden Voids and moisture damage revealed varying degrees of influence, dependent on asphalt type and aggregate gradation.


Doi: 10.28991/CEJ-2023-09-12-014

Full Text: PDF


Rigden Void; Moisture Damage; Fillers; Image Processing; Analysis System.


Cheng, D. X., Little, D. N., Lytton, R. L., & Holste, J. C. (2002). Surface energy measurement of asphalt and its application to predicting fatigue and healing in asphalt mixtures. Transportation Research Record, 1810, 44–53. doi:10.3141/1810-06.

Chaturabong, P., & Bahia, H. U. (2018). Effect of moisture on the cohesion of asphalt mastics and bonding with surface of aggregates. Road Materials and Pavement Design, 19(3), 741–753. doi:10.1080/14680629.2016.1267659.

Harris, B. M., & Stuart, K. D. (1995). Analysis of mineral fillers and mastics used in stone matrix asphalt. Asphalt Paving Technology, 64, 54-95.

Romeo, E., Ghizzardi, V., Rastelli, S., & Montepara, A. (2016). Influence of Mineral Fillers and Their Fractional Voids on Mastic Rheological and Mechanical Properties. 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. RILEM Bookseries, 11. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-017-7342-3_55.

Zhang, J., Sun, C., Li, P., Liang, M., Jiang, H., & Yao, Z. (2019). Experimental study on rheological properties and moisture susceptibility of asphalt mastic containing red mud waste as a filler substitute. Construction and Building Materials, 211, 159–166. doi:10.1016/j.conbuildmat.2019.03.252.

Das, A. K., & Singh, D. (2020). Interfacial bond strength and moisture induced damage characteristics of asphalt mastic-aggregate system composed of Nano hydrated lime filler. International Journal of Pavement Research and Technology, 13(6), 665–672. doi:10.1007/s42947-020-6004-7.

Rigden, P. J. (1947). The use of fillers in bituminous road surfacings. A study of filler-binder systems in relation to filler characteristics. Journal of the Society of Chemical Industry, 66(9), 299–309. doi:10.1002/jctb.5000660902.

Anderson, D. A., & Goetz, W. H. (1973). Mechanical behavior and reinforcement of mineral filler-asphalt mixtures. Journal of the Association of Asphalt Paving Technologists, 42, 37–66.

Anderson, D. A. (1987). Guidelines for use of dust in hot mix asphalt concrete mixtures. Association of Asphalt Paving Technologists Proceedings Technical Sessions, Reno, United States.

Richardson, C. (1915). The theory of the perfect sheet asphalt surface. Industrial and Engineering Chemistry, 7(6), 463–465. doi:10.1021/ie50078a002.

Kallas, B. F., & Puzinauskas, V. P. (1961). A study of mineral fillers in asphalt paving mixtures. Journal of the Association of Asphalt Paving Technologists, 10, 493-528.

Brown, E. R., Haddock, J. E., & Crawford, C. (1996). Investigation of Stone Matrix Asphalt Mortars. Transportation Research Record: Journal of the Transportation Research Board, 1530(1), 95–102. doi:10.1177/0361198196153000112.

Heitzman, M. A. (2005). Development of new film thickness models for hot mix asphalt. PhD Thesis, Iowa State University, Ames, United States.

Mogawer, W. S., & Stuart, K. D. (1996). Effects of Mineral Fillers on Properties of Stone Matrix Asphalt Mixtures. Transportation Research Record: Journal of the Transportation Research Board, 1530(1), 86–94. doi:10.1177/0361198196153000111.

Anderson, D. A., & Tarris, J. P. (1982). Adding dust collector fines to asphalt paving mixtures. NCHRP report, Transportation Research Board, Washington, United States.

Smith, B. J., & Hesp, S. A. M. (2000). Crack Pinning in Asphalt Mastic and Concrete: Regular Fatigue Studies. Transportation Research Record: Journal of the Transportation Research Board, 1728(1), 75–81. doi:10.3141/1728-11.

Winniford, R. S. (1961). The Rheology of Asphalt-Filler Systems as Shown by the Microviscometer. STP309, 109–120, American Society for Testing and Materials, West Conshohocken, United States.

Heukelom, W. (1968). The role of filler in bituminous mixes. Association Asphalt Paving Technology Proceeding (AAPT), Minnesota, United States.

Heukelom, W., & Wijga, P. W. O. (1971). Viscosity of dispersions as governed by concentration and rate of shear. Journal of the Association of Asphalt Paving Technologists, 40, 418-437.

Craus, J., Ishai, I., & Sides, A. (1978). Some physico-chemical aspects of the effect and the role of the filler in bituminous paving mixtures. Association of Asphalt Paving Technologists Proceeding, 13-15 February, 1978, Lake Buena Vista, United States.

Kandhal, P. S. (1981). Evaluation of baghouse fines in bituminous paving mixtures (with discussion). Association of Asphalt Paving Technologists Proceedings, St Paul, United States.

Dukatz, E. L., & Anderson, D. A. (1980). The effect of various fillers on the mechanical behavior of asphalt and asphalt concrete. Association of Asphalt Paving Technologists Proceedings, St Paul, United States.

Anderson, D. A., Tarris, J. P., & Brock, J. D. (1982). Dust Collector Fines and Their Influence on Mixture Design (With Discussion). Association of Asphalt Paving Technologists Proceedings, St Paul, United States.

Shashidhar, N., & Romero, P. (1998). Factors Affecting the Stiffening Potential of Mineral Fillers. Transportation Research Record: Journal of the Transportation Research Board, 1638(1), 94–100. doi:10.3141/1638-11.

Shashidhar, N., Needham, S. P., Chollar, B. H., & Romero, P. (1999). Prediction of the performance of mineral fillers in stone matrix asphalt. Association of Asphalt Paving Technologists Proceedings, St Paul, United States.

Kandhal, P. S., Lynn, C. Y., & Parker, F. (1988). Tests for plastic fines in aggregates related to stripping in asphalt paving mixtures. Report No: NCAT Report No. 98-3. National Center for Asphalt Technology, Washinton, United States.

Faheem, A., & Bahia, H. U. (2009). Conceptual phenomenological model for interaction of asphalt binders with mineral fillers. Asphalt Paving Technology-Proceedings, 28, 679.

Faheem, A. F., & Bahia, H. U. (2010). Modelling of asphalt mastic in terms of filler-bitumen interaction. Road Materials and Pavement Design, 11, 281–303. doi:10.1080/14680629.2010.9690335.

Faheem, A., Hintz, C., Bahia, H., Al-Qadi, I., & Glidden, S. (2012). Influence of filler fractional voids on mastic and mixture performance. Transportation Research Record, 2294(2294), 74–80. doi:10.3141/2294-08.

Sangiorgi, C., Tataranni, P., Mazzotta, F., Simone, A., Vignali, V., & Lantieri, C. (2017). Alternative fillers for the production of bituminous mixtures: A screening investigation on waste powders. Coatings, 7(6), 76. doi:10.3390/coatings7060076.

Choudhary, R., Chattopadhyay, D., Kumar, A., & Julaganti, A. (2017). Use of industrial wastes as filler in open-graded friction courses. The Baltic Journal of Road and Bridge Engineering, 12(2), 106–116. doi:10.3846/bjrbe.2017.13.

Lesueur, D., Lázaro Blázquez, M., Andaluz Garcia, D., & Ruiz Rubio, A. (2018). On the impact of the filler on the complex modulus of asphalt mixtures. Road Materials and Pavement Design, 19(5), 1057–1071. doi:10.1080/14680629.2017.1288653.

Harris, B. M., & Stuart, K. D. (1995). Analysis of mineral fillers and mastics used in stone matrix asphalt. Asphalt Paving Technology, 64, 54-95.

Çelik, O. N., & Atiş, C. D. (2008). Compactibility of hot bituminous mixtures made with crumb rubber-modified binders. Construction and Building Materials, 22(6), 1143–1147. doi:10.1016/j.conbuildmat.2007.02.005.

Delgadillo, R., & Bahia, H. U. (2008). Effects of Temperature and Pressure on Hot Mixed Asphalt Compaction: Field and Laboratory Study. Journal of Materials in Civil Engineering, 20(6), 440–448. doi:10.1061/(asce)0899-1561(2008)20:6(440).

Hunter, A. E., Airey, G. D., & Collop, A. C. (2004). Effect of asphalt mixture compaction on aggregate orientation and mechanical performance. Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa (CAPSA'04), 12-16 September, Sun City, South Africa.

Airey, G. D., Hunter, A. E., & Collop, A. C. (2008). The effect of asphalt mixture gradation and compaction energy on aggregate degradation. Construction and Building Materials, 22(5), 972–980. doi:10.1016/j.conbuildmat.2006.11.022.

Tayebali, A. A., Malpass, G. A., & Khosla, N. P. (1998). Effect of mineral filler type and amount on design and performance of asphalt concrete mixtures. Transportation Research Record, 1609(1609), 36–43. doi:10.3141/1609-05.

Valdes, J. P., Kahouadji, L., Liang, F., Shin, S., Chergui, J., Juric, D., & Matar, O. K. (2023). Direct numerical simulations of liquid–liquid dispersions in a SMX mixer under different inlet conditions. Chemical Engineering Journal, 462, 142248. doi:10.1016/j.cej.2023.142248.

Hesami, E., Jelagin, D., Kringos, N., & Birgisson, B. (2012). An empirical framework for determining asphalt mastic viscosity as a function of mineral filler concentration. Construction and Building Materials, 35, 23–29. doi:10.1016/j.conbuildmat.2012.02.093.

Wang, H., Al-Qadi, I. L., Faheem, A. F., Bahia, H. U., Yang, S. H., & Reinke, G. H. (2011). Effect of mineral filler characteristics on asphalt mastic and mixture rutting potential. Transportation Research Record, 2208(2208), 33–39. doi:10.3141/2208-05.

Akarsh, P. K., Ganesh, G. O., Marathe, S., & Rai, R. (2022). Incorporation of Sugarcane Bagasse Ash to investigate the mechanical behavior of Stone Mastic Asphalt. Construction and Building Materials, 353. doi:10.1016/j.conbuildmat.2022.129089.

Rachabut, K., & Chaturabong, P. (2020). Evaluation of using natural fillers to improve moisture damage resistance and the use of pull-off tensile test in determining moisture damage resistance in asphalt mixture. Applied Sciences (Switzerland), 10(12), 4318. doi:10.3390/app10124318.

Mongkol, K., Chaturabong, P., & Suwannaplai, A. (2020). Effect of bagasse and coconut peat fillers on asphalt mixture workability. Coatings, 10(12), 1–15. doi:10.3390/coatings10121262.

Sefidmazgi, N. R., Tashman, L., & Bahia, H. (2012). Internal structure characterization of asphalt mixtures for rutting performance using imaging analysis. Road Materials and Pavement Design, 13(Sup1), 21–37. doi:10.1080/14680629.2012.657045.

Hemnithi, N., & Chaturabong, P. (2023). Utilizing Imaging Analysis to Determine the Internal Structure Characteristics of Asphalt Mixtures for Permeability and Moisture Damage Performance. Coatings, 13(3), 584. doi:10.3390/coatings13030584.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-014


  • There are currently no refbacks.

Copyright (c) 2024 Jirat Wuttisombatjaroen, Nithinan Hemnithi, Preeda Chaturabong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.