An Experimental Study of Strength Increase in Masonry Wall Reinforced by One-sided Khorasan Mortar with Steel Mesh

Volkan Öztaş, Necdet Torunbalcı


The strengthening of masonry structures is of paramount importance due to their inherent lack of tensile elements, rendering them susceptible to tensile stresses induced by horizontal loads and the resultant substantial damage. Consequently, this study aims to develop a reinforcement system for the strengthening of historical masonry structures by using mortars devoid of cement and modern pozzolan. Experiments were conducted on masonry walls unreinforced and reinforced by a one-sided Khorasan mortar with steel mesh. Initially, six masonry brick walls constructed using Khorasan lime mortar were prepared. Subsequently, after a waiting period of six months, Khorasan plaster mortar, reinforced with steel mesh, was applied to three masonry walls on one side. Following an 18-month waiting period, all samples were subjected to testing in an experimental setup designed and manufactured for this purpose. The wall reinforcement resulted in a significant increase, with the average peak load by 215.73%, and the average displacement by 48.82%. The experimental shear force on unreinforced walls was found to be 41.23% lower than Eurocode-6 and 1.41% lower than TBDY-2018. In the case of one-sided reinforced walls, the experimental shear force was 9.94% lower than Eurocode-6 and 6.16% lower than TBDY-2018. This form of strengthening not only obviates the use of potentially damaging cement in historical buildings but also extends the lifespan of the reinforced structures.


Doi: 10.28991/CEJ-2023-09-12-019

Full Text: PDF


Khorasan Mortar; Masonry Wall; Steel Mesh.


Kashani, H. K., Shakiba, M., Bazli, M., Hosseini, S. M., Mortazavi, S. M. R., & Arashpour, M. (2023). The structural response of masonry walls strengthened using prestressed near surface mounted GFRP bars under cyclic loading. Materials and Structures, 56, 112. doi:10.1617/s11527-023-02201-0.

Monaco, A., Minafò, G., Cucchiara, C., D’Anna, J., & La Mendola, L. (2017). Finite element analysis of the out-of-plane behavior of FRP strengthened masonry panels. Composites Part B: Engineering, 115, 188–202. doi:10.1016/j.compositesb.2016.10.016.

Torres, N., Tumialan, J. G., Nanni, A., Bennet, R. M., & De Caso Basalo, F. J. (2022). Flexural Design of Masonry Walls Reinforced with FRP Bars Based on Full-Scale Structural Tests. American Concrete Institute, ACI Special Publication, SP-356, 291–311. doi:10.14359/51737277.

Dong, Z., Deng, M., Dai, J., & Ma, P. (2021). Diagonal compressive behavior of unreinforced masonry walls strengthened with textile reinforced mortar added with short PVA fibers. Engineering Structures, 246. doi:10.1016/j.engstruct.2021.113034.

Castori, G., Corradi, M., & Sperazini, E. (2021). Full size testing and detailed micro-modeling of the in-plane behavior of FRCM–reinforced masonry. Construction and Building Materials, 299. doi:10.1016/j.conbuildmat.2021.124276.

Vienni, C., Salvatori, L., & Orlando, M. (2022). Cyclic shear-compression tests on CRM reinforced brick masonry walls. Procedia Structural Integrity, 44, 2262–2269. doi:10.1016/j.prostr.2023.01.289.

Vienni, C., Orlando, M., & Salvatori, L. (2022). CRM reinforced brick masonry walls: Experimental and parametric numerical investigations. Procedia Structural Integrity, 44, 2270–2277. doi:10.1016/j.prostr.2023.01.290.

D’Antino, T., Carozzi, F. G., & Poggi, C. (2019). Diagonal shear behavior of historic walls strengthened with composite reinforced mortar (CRM). Materials and Structures, 52, 114. doi:10.1617/s11527-019-1414-1.

Biolzi, L., Cattaneo, S., Crespi, P., Scamardo, M., & Vafa, N. (2023). Diagonal compression cyclic testing of unreinforced and reinforced masonry walls. Construction and Building Materials, 363. doi:10.1016/j.conbuildmat.2022.129839.

Ehteshami Moeini, M., Razavi, S. A., Yekrangnia, M., Pourasgari, P., & Abbasian, N. (2022). Cyclic performance assessment of damaged unreinforced masonry walls repaired with steel mesh reinforced shotcrete. Engineering Structures, 253. doi:10.1016/j.engstruct.2021.113747.

Warjri, T., Marbaniang, D. F., & Marthong, C. (2022). In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar. Journal of Structural Integrity and Maintenance, 7(3), 177–187. doi:10.1080/24705314.2022.2048241.

Ullah, S., Farooq, S. H., Usman, M., Ullah, B., Hussain, M., & Hanif, A. (2022). In-Plane Seismic Strengthening of Brick Masonry Using Steel and Plastic Meshes. Materials, 15(11), 4013. doi:10.3390/ma15114013.

Lubin, C., Guerrero, H., Alcocer, S. M., & Lopez Batiz, O. (2023). Experimental Behavior of Confined Masonry Walls Rehabilitated with Reinforced Mortar Jacketing Subjected to Cyclic Loading. Buildings, 13(5), 1314. doi:10.3390/buildings13051314.

Hasnat, A., Ahsan, R., & Yashin, S. M. (2022). Quasi-static in-plane behavior of full-scale unreinforced masonry walls retrofitted using ferro-cement overlay. Asian Journal of Civil Engineering, 23(5), 649–664. doi:10.1007/s42107-022-00447-7.

Şimşek, E. T. (2018). An Experimental Assessment of Textile and Wire Reinforced Horasan Mortar Strengthening of Brick Walls In Historical Buildings. MS.c. Thesis, I.T.U. Institute of Science and Technology, Istanbul, Turkey.

Torunbalci, N., Ediz, I., & Sutcu, F. (2012). Strengthening a heritage structure with self-compacting concrete: An experimental study. WIT Transactions on State-of-the-art in Science and Engineering, 121. doi:10.2495/978-1-84564-754-4/11.

Torunbalci, N., Onar, E., & Sutcu, F. (2011). An experimental study on alternative CFRP retrofitting applications of heritage structures. International Journal of Sustainable Development and Planning, 6(2), 152–165. doi:10.2495/SDP-V6-N2-152-165.

Garcia-Ramonda, L., Pelà, L., Roca, P., & Camata, G. (2022). Experimental cyclic behaviour of shear masonry walls reinforced with single and double layered Steel Reinforced Grout. Construction and Building Materials, 320. doi:10.1016/j.conbuildmat.2021.126053.

Wang, X., Lam, C. C., & Iu, V. P. (2018). Experimental investigation of in-plane shear behaviour of grey clay brick masonry panels strengthened with SRG. Engineering Structures, 162, 84–96. doi:10.1016/j.engstruct.2018.02.027.

Özsaraç, S. (2009). The Experimental Investigatıon of Constructive Brick Walls Strengthened With Glass Fiber Reinforced Polymer in Masonry Buildings. MSc Thesis, I.T.U. Institute of Science and Technology, Istanbul, Turkey.

Son, S. H., An, J. H., Song, J. H., Hong, Y. S., Jang, H. S., & Eun, H. C. (2021). In-plane strengthening of unreinforced masonry walls by glass fiber-reinforced polyurea. Civil Engineering Journal (Iran), 7(12), 2119–2129. doi:10.28991/cej-2021-03091782.

Khan, I., Gul, A., Shahzada, K., Khan, N. A., Rehman, F. U., Samiullah, Q., & Khattak, M. A. (2021). Computational seismic analysis of dry-stack block masonry wall. Civil Engineering Journal (Iran), 7(3), 488–501. doi:10.28991/cej-2021-03091668.

ElGawady, M. A., Lestuzzi, P., & Badoux, M. (2005). Aseismic retrofitting of unreinforced masonry walls using FRP. Composites Part B: Engineering, 37(2–3), 148–162. doi:10.1016/j.compositesb.2005.06.003.

Ismail, N., & Ingham, J. M. (2016). In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Engineering Structures, 118, 167-177. doi:10.1016/j.engstruct.2016.03.041.

Shermi, C., & Dubey, R. N. (2018). In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar. Construction and Building Materials, 178, 195–203. doi:10.1016/j.conbuildmat.2018.04.081.

Kuterdem, K., Nurlu, M., Tekin, B. M., & Erbay, S. (2013). National Framework In Order To Reduce Earthquakes by Multistakeholder Participation in Turkey: National Earthquake Strategy and Action Plan of Turkey (UDSEP-2023), Turkey.

ASTM E519/E519M-15. (2020). Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. Book of Standards Volume: 04.05, 1-5. doi:10.1520/E0519_E0519M-15.

Ashurst, J., & Ashurst, N. (1988). Practical Building Conservation-Mortars, Plasters and Renders. Ashgate Publishing, Farnham, United Kingdom.

Price, C. (1984). Mortars, Cements and Grouts Used in the Conservation of Historic Buildings. Studies in Conservation, 29(1), 52. doi:10.2307/1505946.

Moropoulou, A., Bakolas, A., Moundoulas, P., Aggelakopoulou, E., & Anagnostopoulou, S. (2002). Design and evaluation of restoration mortars for historic masonry using traditional materials and production techniques. Materials Research Society Symposium - Proceedings, 712, 77–82. doi:10.1557/proc-712-ii2.7.

EN 1996-1-1. (2005). Eurocode 6–Design of masonry structures–Part 1-1: general rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Brussels, Belgium.

Petry, S., & Beyer, K. (2014). Scaling unreinforced masonry for reduced-scale seismic testing. Bulletin of Earthquake Engineering, 12(6), 2557–2581. doi:10.1007/s10518-014-9605-1.

Parisi, F., Lignola, G. P., Augenti, N., Prota, A., & Manfredi, G. (2011). Nonlinear Behavior of a Masonry Subassemblage Before and After Strengthening with Inorganic Matrix-Grid Composites. Journal of Composites for Construction, 15(5), 821–832. doi:10.1061/(asce)cc.1943-5614.0000203.

Parisi, F., Menna, C., & Prota, A. (2018). Fabric-reinforced cementitious matrix (FRCM) composites: Mechanical behavior and application to masonry walls. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 199–227. doi:10.1016/B978-0-08-102293-1.00010-3.

Dehghani, A., Fischer, G., & Nateghi Alahi, F. (2015). Strengthening masonry infill panels using engineered cementitious composites. Materials and Structures, 48, 185-204. doi:10.1617/s11527-013-0176-4.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-019


  • There are currently no refbacks.

Copyright (c) 2024 Volkan Öztaş

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.