Optimization Studies of Iron Ore Tailings Powder and Natural Zeolite as Concrete Admixtures

Mahmoud Al-Khazaleh, P. Krishna Kumar


The disposal of Iron ore tailings Powder (IP) is the primary concern for numerous steel industries. Similarly, natural zeolite, a significant by-product of volcanic eruptions, pollutes the environment to an extreme degree. This study investigates and implements the extensive use of IP and natural zeolite as admixtures in M20-grade concrete in order to address the challenges posed by IP and zeolite. By varying the admixture percentage, three distinct mix ratios were formed. First, sand was replaced by iron at concentrations of 5%, 10%, 15%, and 20%. Second, cement was replaced by zeolite at 5%, 10%, 15%, and 20%. In the final mixture, both sand and cement were substituted with iron ore powder and zeolite, respectively, at 5%, 10%, 15%, and 20%. Conplast SP 430, a water-reducing admixture, was used in all of the mixtures at 1% by weight of cement. The mechanical properties of concrete, including compressive strength, split tensile strength, and flexural strength, were studied. To evaluate the long-term properties of admixture-modified concrete, durability tests such as permeability tests, water absorption tests, rapid chloride attack tests, acid attack tests, and sulphate attack tests were conducted. In addition, slump cone tests and thermal conductivity tests were conducted on all the mix combinations to determine the changes in workability and thermal conductivity coefficient. The test results demonstrated that a mix containing 10% zeolite replaced with cement and 10% iron ore tailing powder replaced with sand has the highest performance in terms of strength and durability characteristics. The study also constructs a comparable cost estimate to ensure that its actual implementation is feasible.


Doi: 10.28991/CEJ-2023-09-12-08

Full Text: PDF


Iron Ore Tailing Powder; Natural Zeolite; Thermal Conductivity; Workability; RCPT; Cost Analysis.


Yang, G., Deng, Y., & Wang, J. (2014). Non-hydrothermal synthesis and characterization of MCM-41 mesoporous materials from iron ore tailing. Ceramics International, 40(5), 7401–7406. doi:10.1016/j.ceramint.2013.12.086.

U.S Geologicial Survey. (2020). Iron ore 2020. US Geological Survey, Mineral Commodity Summaries, U.S Geologicial Survey, Reston, United States.

Das, S. K., Kumar, S., & Ramachandrarao, P. (2000). Exploitation of iron ore tailing for the development of ceramic tiles. Waste Management, 20(8), 725–729. doi:10.1016/S0956-053X(00)00034-9.

Liu, Y., Du, F., Yuan, L., Zeng, H., & Kong, S. (2010). Production of lightweight ceramisite from iron ore tailings and its performance investigation in a biological aerated filter (BAF) reactor. Journal of Hazardous Materials, 178(1–3), 999–1006. doi:10.1016/j.jhazmat.2010.02.038.

Du, Z., Ge, L., Ng, A. H. M., Zhu, Q., Horgan, F. G., & Zhang, Q. (2020). Risk assessment for tailings dams in Brumadinho of Brazil using InSAR time series approach. Science of the Total Environment, 717, 137125. doi:10.1016/j.scitotenv.2020.137125.

Shettima, A. U., Hussin, M. W., Ahmad, Y., & Mirza, J. (2016). Evaluation of iron ore tailings as replacement for fine aggregate in concrete. Construction and Building Materials, 120, 72–79. doi:10.1016/j.conbuildmat.2016.05.095.

Prakash, S., Das, B., Mohapatra, B. K., & Venugopal, R. (2000). Recovery of iron values from iron ore slimes by selective magnetic coating. Separation Science and Technology, 35(16), 2651–2662. doi:10.1081/SS-100102361.

Peiravi, M., Dehghani, F., Ackah, L., Baharlouei, A., Godbold, J., Liu, J., Mohanty, M., & Ghosh, T. (2021). A Review of Rare-Earth Elements Extraction with Emphasis on Non-conventional Sources: Coal and Coal Byproducts, Iron Ore Tailings, Apatite, and Phosphate Byproducts. Mining, Metallurgy and Exploration, 38(1), 1–26. doi:10.1007/s42461-020-00307-5.

Yang, C., Cui, C., Qin, J., & Cui, X. (2014). Characteristics of the fired bricks with low-silicon iron tailings. Construction and Building Materials, 70, 36–42. doi:10.1016/j.conbuildmat.2014.07.075.

Mendes, B. C., Pedroti, L. G., Fontes, M. P. F., Ribeiro, J. C. L., Vieira, C. M. F., Pacheco, A. A., & Azevedo, A. R. G. d. (2019). Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks. Construction and Building Materials, 227, 116669. doi:10.1016/j.conbuildmat.2019.08.050.

Wu, D., Sun, W., Liu, S., & Qu, C. (2021). Effect of microwave heating on thermo-mechanical behavior of cemented tailings backfill. Construction and Building Materials, 266. doi:10.1016/j.conbuildmat.2020.121180.

Gu, X., Zhang, W., Zhang, X., Li, X., & Qiu, J. (2022). Hydration characteristics investigation of iron tailings blended ultra-high performance concrete: The effects of mechanical activation and iron tailings content. Journal of Building Engineering, 45, 103459. doi:10.1016/j.jobe.2021.103459.

Han, P. (2013). Experimental Study on High Silicon Iron Ore Tailings Effect on Concrete Workability and Compressive Strength. Northeastern University, Boston, United States.

Zhang, N., Tang, B., & Liu, X. (2021). Cementitious activity of iron ore tailing and its utilization in cementitious materials, bricks and concrete. Construction and Building Materials, 288, 123022. doi:10.1016/j.conbuildmat.2021.123022.

Seraj, S., Ferron, R. D., & Juenger, M. C. G. (2016). Calcining natural zeolites to improve their effect on cementitious mixture workability. Cement and Concrete Research, 85, 102–110. doi:10.1016/j.cemconres.2016.04.002.

Uzal, B., Turanli, L., Yücel, H., Göncüoǧlu, M. C., & Çulfaz, A. (2010). Pozzolanic activity of clinoptilolite: A comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cement and Concrete Research, 40(3), 398–404. doi:10.1016/j.cemconres.2009.10.016.

Caputo, D., Liguori, B., & Colella, C. (2008). Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure. Cement and Concrete Composites, 30(5), 455–462. doi:10.1016/j.cemconcomp.2007.08.004.

Chan, S. Y. N., & Ji, X. (1999). Comparative study of the initial surface absorption and chloride diffusion of high-performance zeolite, silica fume and PFA concretes. Cement and Concrete Composites, 21(4), 293–300. doi:10.1016/S0958-9465(99)00010-4.

Ahmadi, B., & Shekarchi, M. (2010). Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites, 32(2), 134–141. doi:10.1016/j.cemconcomp.2009.10.006.

Karakurt, C., & Topçu, I. B. (2011). Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Construction and Building Materials, 25(4), 1789–1795. doi:10.1016/j.conbuildmat.2010.11.087.

Fernandez, R., Martirena, F., & Scrivener, K. L. (2011). The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research, 41(1), 113–122. doi:10.1016/j.cemconres.2010.09.013.

Vigil De La Villa, R., Fernández, R., Rodríguez, O., García, R., Villar-Cociña, E., & Frías, M. (2013). Evolution of the pozzolanic activity of a thermally treated zeolite. Journal of Materials Science, 48(8), 3213–3224. doi:10.1007/s10853-012-7101-z.

Elkady, H., Serag, M. I., & Elfeky, M. S. (2013). Effect of nano silica de-agglomeration, and methods of adding super-plasticizer on the compressive strength, and workability of nano silica concrete. Civil and Environmental Research, 3(2), 21-34.

Masdeu, F., Carmona, C., Horrach, G., & Muñoz, J. (2021). Effect of Iron (III) Oxide Powder on Thermal Conductivity and Diffusivity of Lime Mortar. Materials, 14(4), 998. doi:10.3390/ma14040998.

Yellishetty, M., Karpe, V., Reddy, E. H., Subhash, K. N., & Ranjith, P. G. (2008). Reuse of iron ore mineral wastes in civil engineering constructions: A case study. Resources, Conservation and Recycling, 52(11), 1283–1289. doi:10.1016/j.resconrec.2008.07.007.

Hou, Y. (2014). Comparison of effect of iron tailing sand and natural sand on concrete properties. Key Engineering Materials, 599, 11–14. doi:10.4028/www.scientific.net/KEM.599.11.

Goyal, S., Singh, K., Hussain, A., & Singh, P. R. (2015). Study on partial replacement of sand with iron ore tailing on compressive strength of concrete. International Journal of Research in Engineering & Advanced Technology, 3(2), 243–248.

Vaičiukynienė, D., Skripkiūnas, G., Sasnauskas, V., & Daukšys, M. (2012). Cement compositions with modified hydrosodalite. Chemija, 23(3), 147–154.

Zhao, J., Wang, Q., Xu, G., Shi, Y., & Su, Y. (2023). Influence of macro-synthetic fiber on the mechanical properties of iron ore tailing concrete. Construction and Building Materials, 367, 130293. doi:10.1016/j.conbuildmat.2023.130293.

Zhang, Y., Li, Z., Gu, X., Nehdi, M. L., Marani, A., & Zhang, L. (2023). Utilization of iron ore tailings with high volume in green concrete. Journal of Building Engineering, 72, 106585. doi:10.1016/j.jobe.2023.106585.

Correia, J. R., De Brito, J., & Pereira, A. S. (2006). Effects on concrete durability of using recycled ceramic aggregates. Materials and Structures/Materiaux et Constructions, 39(2), 169–177. doi:10.1617/s11527-005-9014-7.

Valipour, M., Pargar, F., Shekarchi, M., & Khani, S. (2013). Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879–888. doi:10.1016/j.conbuildmat.2012.11.054.

Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete Research, 33(10), 1607–1611. doi:10.1016/S0008-8846(03)00125-X.

Liu, K., Wang, S., Quan, X., Jing, W., Xu, J., Zhao, N., & Liu, B. (2022). Effect of iron ore tailings industrial by-product as eco-friendly aggregate on mechanical properties, pore structure, and sulfate attack and dry-wet cycle’s resistance of concrete. Case Studies in Construction Materials, 17. doi:10.1016/j.cscm.2022.e01472.

Xu, F., Wang, S., Li, T., Liu, B., Zhao, N., & Liu, K. (2021). The mechanical properties and resistance against the coupled deterioration of sulfate attack and freeze-thaw cycles of tailing recycled aggregate concrete. Construction and Building Materials, 269, 121273. doi:10.1016/j.conbuildmat.2020.121273.

Zhang, G. D., Zhang, X. Z., Zhou, Z. H., & Cheng, X. (2014). Preparation and properties of concrete containing iron tailings/manufactured sand as fine aggregate. Advanced Materials Research, 838–841, 152–155. doi:10.4028/www.scientific.net/AMR.838-841.152.

Singh, M., & Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling, 72, 20–32. doi:10.1016/j.resconrec.2012.12.006.

Krishna Kumar, P., & Chinnaraju, K. (2022). Utilization potentials of a nano bio-carbonate filler to mitigate alkali-aggregate reactivity of glass powder–foamed concrete. Canadian Journal of Civil Engineering, 49(10), 1569–1581. doi:10.1139/cjce-2022-0122.

Palaniappan, K. K., Komarasamy, C., & Murugan, S. (2022). Utilization of Cuttlebone as Filler in Hydrophobic Foam Mortar: A Technical and Economical Feasibility Study. Journal of Materials in Civil Engineering, 34(8), 4022191. doi:10.1061/(asce)mt.1943-5533.0004335.

Vejmelková, E., Koňáková, D., Kulovaná, T., Keppert, M., Žumár, J., Rovnaníková, P., Keršner, Z., Sedlmajer, M., & Černý, R. (2015). Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cement and Concrete Composites, 55, 259–267. doi:10.1016/j.cemconcomp.2014.09.013.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-08


  • There are currently no refbacks.

Copyright (c) 2024 Mahmoud Al Khazaleh, Krishna Kumar P

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.