Modeling Finned Thermal Collector Construction Nanofluid-based Al2O3 to Enhance Photovoltaic Performance

Singgih D. Prasetyo, Eko P. Budiana, Aditya R. Prabowo, Zainal Arifin


Extensive research has been conducted to address the issue of the reduced efficiency of solar photovoltaic (PV) cells at high temperatures. To address this problem, a hybrid cooling system has been developed. This system uses a thermal collector to convert waste heat into reusable heat. Selecting the best configuration and operational parameters for the collector is crucial for maximizing system performance. To achieve this, we conducted computational fluid dynamics (CFD) modeling using ANSYS. Various factors affecting the cooling of PV solar cells were analyzed, including the collector design, mass flow rate, and concentration of the Al2O3 nanofluids. Results showed that the 12S finned thermal collector system exhibits the lowest temperature for PV solar cells, at approximately 29.654 oC. The electrical efficiency of PV solar cells is influenced by the concentration of Al2O3 nanofluids. We found that the 12S finned collector system with 1% water/Al2O3 nanofluid achieved the highest efficiency (approximately 11.749%) at a flow rate of 0.09 kg/s. The addition of finned collectors affects efficiency and variations in fluid mass flow rates, and there is no relation between the connector type and different Al2O3nanofluid concentrations. In other words, the cooling system can be optimized to enhance the efficiency of the PV solar cells under high-temperature conditions.


Doi: 10.28991/CEJ-2023-09-12-03

Full Text: PDF


PV; CFD; ANSYS; Finned Thermal Collector; Efficiency.


Badawy, W. A. (2015). A review on solar cells from Si-single crystals to porous materials and Quantum dots. Journal of Advanced Research, 6(2), 123–132. doi:10.1016/j.jare.2013.10.001.

Nurwidiana, N., Sopha, B. M., & Widyaparaga, A. (2021). Modelling photovoltaic system adoption for households: A systematic literature review. Evergreen, 8(1), 69–81. doi:10.5109/4372262.

Radziemska, E. (2003). The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy, 28(1), 1–12. doi:10.1016/s0960-1481(02)00015-0.

Rejeb, O., Gaillard, L., Giroux-Julien, S., Ghenai, C., Jemni, A., Bettayeb, M., & Menezo, C. (2020). Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances. Renewable Energy, 146, 610–627. doi:10.1016/j.renene.2019.06.158.

Abo-Elfadl, S., Hassan, H., & El-Dosoky, M. F. (2020). Energy and exergy assessment of integrating reflectors on thermal energy storage of evacuated tube solar collector-heat pipe system. Solar Energy, 209, 470–484. doi:10.1016/j.solener.2020.09.009.

Braun, R., Haag, M., Stave, J., Abdelnour, N., & Eicker, U. (2020). System design and feasibility of trigeneration systems with hybrid photovoltaic-thermal (PVT) collectors for zero energy office buildings in different climates. Solar Energy, 196, 39–48. doi:10.1016/j.solener.2019.12.005.

Kandeal, A. W., Thakur, A. K., Elkadeem, M. R., Elmorshedy, M. F., Ullah, Z., Sathyamurthy, R., & Sharshir, S. W. (2020). Photovoltaics performance improvement using different cooling methodologies: A state-of-art review. Journal of Cleaner Production, 273, 122772. doi:10.1016/j.jclepro.2020.122772.

Pater, S. (2021). Long-term performance analysis using TRNSYS software of hybrid systems with PV-t. Energies, 14(21), 6921. doi:10.3390/en14216921.

Slimani, M. E. A., Sellami, R., Said, M., & Bouderbal, A. (2021). A Novel Hybrid Photovoltaic/Thermal Bi-Fluid (Air/Water) Solar Collector: An Experimental Investigation. Proceedings of the 4th International Conference on Electrical Engineering and Control Applications, ICEECA 2019, Lecture Notes in Electrical Engineering, 682, Springer, Singapore. doi:10.1007/978-981-15-6403-1_47.

Abdullah, A. L., Misha, S., Tamaldin, N., Rosli, M. A. M., & Sachit, F. A. (2019). Numerical analysis of solar hybrid photovoltaic thermal air collector simulation by ANSYS. CFD Letters, 11(2), 1-11.

Yu, Y., Long, E., Chen, X., & Yang, H. (2019). Testing and modelling an unglazed photovoltaic thermal collector for application in Sichuan Basin. Applied Energy, 242, 931–941. doi:10.1016/j.apenergy.2019.03.114.

Arifin, Z., Prasetyo, S. D., Tjahjana, D. D. D. P., Rachmanto, R. A., Prabowo, A. R., & Alfaiz, N. F. (2022). The application of TiO2 nanofluids in photovoltaic thermal collector systems. Energy Reports, 8, 1371–1380. doi:10.1016/j.egyr.2022.08.070.

Simón-Allué, R., Guedea, I., Villén, R., & Brun, G. (2019). Experimental study of Phase Change Material influence on different models of Photovoltaic-Thermal collectors. Solar Energy, 190, 1–9. doi:10.1016/j.solener.2019.08.005.

Shahsavar, A., Jha, P., Arici, M., & Kefayati, G. (2021). A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors. Energy, 220, 119714. doi:10.1016/

Prasetyo, S. D., Arifin, Z., Prabowo, A. R., Budiana, E. P., Rosli, M. A. M., Alfaiz, N. F., & Bangun, W. B. (2023). Optimization of Photovoltaic Thermal Collectors Using Fins: A Review of Strategies for Enhanced Solar Energy Harvesting. Mathematical Modelling of Engineering Problems, 10(4), 1235–1248. doi:10.18280/mmep.100416.

Allouhi, A., Kousksou, T., Jamil, A., Bruel, P., Mourad, Y., & Zeraouli, Y. (2015). Solar driven cooling systems: An updated review. Renewable and Sustainable Energy Reviews, 44, 159–181. doi:10.1016/j.rser.2014.12.014.

Shahsavar, A., Eisapour, M., & Talebizadehsardari, P. (2020). Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular. Energy, 208(118409). doi:10.1016/

Shahsavar, A. (2021). Experimental evaluation of energy and exergy performance of a nanofluid-based photovoltaic/thermal system equipped with a sheet-and-sinusoidal serpentine tube collector. Journal of Cleaner Production, 287, 125064. doi:10.1016/j.jclepro.2020.125064.

Smaisim, G. F., mohammed, D. B., Abdulhadi, A. M., Uktamov, K. F., Alsultany, F. H., Izzat, S. E., Ansari, M. J., Kzar, H. H., Al-Gazally, M. E., & Kianfar, E. (2022). Nanofluids: properties and applications. Journal of Sol-Gel Science and Technology, 104(1), 1–35. doi:10.1007/s10971-022-05859-0.

Calderón, A., Barreneche, C., Palacios, A., Segarra, M., Prieto, C., Rodriguez‐Sanchez, A., & Fernández, A. I. (2019). Review of solid particle materials for heat transfer fluid and thermal energy storage in solar thermal power plants. Energy Storage, 1(4), e63. doi:10.1002/est2.63.

Fudholi, A., Razali, N. F. M., Yazdi, M. H., Ibrahim, A., Ruslan, M. H., Othman, M. Y., & Sopian, K. (2019). TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach. Energy, 183, 305–314. doi:10.1016/

Prasetyo, S. D., Prabowo, A. R., & Arifin, Z. (2023). The use of a hybrid photovoltaic/thermal (PV/T) collector system as a sustainable energy-harvest instrument in urban technology. Heliyon, 9(2), e13390. doi:10.1016/j.heliyon.2023.e13390.

Alawi, O. A., Kamar, H. M., Mallah, A. R., Mohammed, H. A., Sabrudin, M. A. S., Newaz, K. M. S., Najafi, G., & Yaseen, Z. M. (2021). Experimental and theoretical analysis of energy efficiency in a flat plate solar collector using monolayer graphene nanofluids. Sustainability (Switzerland), 13(10), 5416. doi:10.3390/su13105416.

Çiftçi, E., Khanlari, A., Sözen, A., Aytaç, İ., & Tuncer, A. D. (2021). Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation. Renewable Energy, 180, 410–423. doi:10.1016/j.renene.2021.08.081.

Hai, T., & Zhou, J. (2023). Predicting the performance of thermal, electrical and overall efficiencies of a nanofluid-based photovoltaic/thermal system using Elman recurrent neural network methodology. Engineering Analysis with Boundary Elements, 150, 394-399. doi:10.1016/j.enganabound.2023.02.013.

Baranwal, N. K., & Singhal, M. K. (2021). Modeling and Simulation of a Spiral Type Hybrid Photovoltaic Thermal (PV/T) Water Collector Using ANSYS. Advances in Clean Energy Technologies, Springer. doi:10.1007/978-981-16-0235-1_10.

Rosli, M. A. M., Ping, Y. J., Misha, S., Akop, M. Z., Sopian, K., Mat, S., Al-Shamani, A. N., & Saruni, M. A. (2018). Simulation study of computational fluid dynamics on photovoltaic thermal water collector with different designs of absorber tube. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 52(1), 12–22.

Liu, Z., Zhang, Y., Zhang, L., Luo, Y., Wu, Z., Wu, J., Yin, Y., & Hou, G. (2018). Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system. Applied Energy, 228, 1887–1900. doi:10.1016/j.apenergy.2018.07.006.

Gomaa, M. R., Ahmed, M., & Rezk, H. (2022). Temperature distribution modeling of PV and cooling water PV/T collectors through thin and thick cooling cross-fined channel box. Energy Reports, 8, 1144–1153. doi:10.1016/j.egyr.2021.11.061.

Pang, W., Cui, Y., Zhang, Q., & Yan, H. (2020). Enhanced electrical performance for heterojunction with intrinsic thin-layer solar cells based photovoltaic thermal system with aluminum collector. International Communications in Heat and Mass Transfer, 116, 104705. doi:10.1016/j.icheatmasstransfer.2020.104705.

Yandri, E. (2019). Development and experiment on the performance of polymeric hybrid Photovoltaic Thermal (PVT) collector with halogen solar simulator. Solar Energy Materials and Solar Cells, 201, 110066. doi:10.1016/j.solmat.2019.110066.

He, W., Chow, T. T., Ji, J., Lu, J., Pei, G., & Chan, L. S. (2006). Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water. Applied Energy, 83(3), 199–210. doi:10.1016/j.apenergy.2005.02.007.

Sutanto, B., & Indartono, Y. S. (2019). Computational fluid dynamic (CFD) modelling of floating photovoltaic cooling system with loop thermosiphon. AIP Conference Proceedings, 2062, 020011. doi:10.1063/1.5086558.

Jia, Y., Ran, F., Zhu, C., & Fang, G. (2020). Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant. Solar Energy, 196, 625–636. doi:10.1016/j.solener.2019.12.069.

Hasan, M. I., Rageb, A. M. A. R., & Yaghoubi, M. (2012). Investigation of a Counter Flow Microchannel Heat Exchanger Performance with Using Nanofluid as a Coolant. Journal of Electronics Cooling and Thermal Control, 02(03), 35–43. doi:10.4236/jectc.2012.23004.

Rosli, M. A. M., Rou, C. J., Sanusi, N., Saleem, S. N. D. N., Salimen, N., Herawan, S. G., Abdullah, N., Permanasari, A. A., Arifin, Z., & Hussain, F. (2022). Numerical Investigation on Using MWCNT/Water Nanofluids in Photovoltaic Thermal System (PVT). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 99(1), 35–57. doi:10.37934/arfmts.99.1.3557.

Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review. Energy Procedia, 33, 311–321. doi:10.1016/j.egypro.2013.05.072.

Özakın, A. N., & Kaya, F. (2020). Experimental thermodynamic analysis of air-based PVT system using fins in different materials: Optimization of control parameters by Taguchi method and ANOVA. Solar Energy, 197, 199–211. doi:10.1016/j.solener.2019.12.077.

Fan, W., Kokogiannakis, G., & Ma, Z. (2018). A multi-objective design optimisation strategy for hybrid photovoltaic thermal collector (PVT)-solar air heater (SAH) systems with fins. Solar Energy, 163, 315–328. doi:10.1016/j.solener.2018.02.014.

Arifin, Z., Suyitno, S., Tjahjana, D. D. D. P., Juwana, W. E., Putra, M. R. A., & Prabowo, A. R. (2020). The effect of heat sink properties on solar cell cooling systems. Applied Sciences (Switzerland), 10(21), 1–16. doi:10.3390/app10217919.

Mohamed, M. H., Ali, A. M., & Hafiz, A. A. (2015). CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Engineering Science and Technology, an International Journal, 18(1), 1–13. doi:10.1016/j.jestch.2014.08.002.

Setyohandoko, G., Sutanto, B., Rachmanto, R. A., Dwi Prija Tjahjana, D. D., & Arifin, Z. (2020). A numerical approach to study the performance of photovoltaic panels by using aluminium heat sink. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 97–105. doi:10.37934/ARFMTS.70.2.97105.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-03


  • There are currently no refbacks.

Copyright (c) 2024 Singgih Dwi Prasetyo, Eko Prasetya Budiana, Aditya Rio Prabowo, Zainal Arifin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.