Modeling Finned Thermal Collector Construction Nanofluid-based Al2O3 to Enhance Photovoltaic Performance
Downloads
Doi: 10.28991/CEJ-2023-09-12-03
Full Text: PDF
Downloads
[2] Nurwidiana, N., Sopha, B. M., & Widyaparaga, A. (2021). Modelling photovoltaic system adoption for households: A systematic literature review. Evergreen, 8(1), 69–81. doi:10.5109/4372262.
[3] Radziemska, E. (2003). The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy, 28(1), 1–12. doi:10.1016/s0960-1481(02)00015-0.
[4] Rejeb, O., Gaillard, L., Giroux-Julien, S., Ghenai, C., Jemni, A., Bettayeb, M., & Menezo, C. (2020). Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances. Renewable Energy, 146, 610–627. doi:10.1016/j.renene.2019.06.158.
[5] Abo-Elfadl, S., Hassan, H., & El-Dosoky, M. F. (2020). Energy and exergy assessment of integrating reflectors on thermal energy storage of evacuated tube solar collector-heat pipe system. Solar Energy, 209, 470–484. doi:10.1016/j.solener.2020.09.009.
[6] Braun, R., Haag, M., Stave, J., Abdelnour, N., & Eicker, U. (2020). System design and feasibility of trigeneration systems with hybrid photovoltaic-thermal (PVT) collectors for zero energy office buildings in different climates. Solar Energy, 196, 39–48. doi:10.1016/j.solener.2019.12.005.
[7] Kandeal, A. W., Thakur, A. K., Elkadeem, M. R., Elmorshedy, M. F., Ullah, Z., Sathyamurthy, R., & Sharshir, S. W. (2020). Photovoltaics performance improvement using different cooling methodologies: A state-of-art review. Journal of Cleaner Production, 273, 122772. doi:10.1016/j.jclepro.2020.122772.
[8] Pater, S. (2021). Long-term performance analysis using TRNSYS software of hybrid systems with PV-t. Energies, 14(21), 6921. doi:10.3390/en14216921.
[9] Slimani, M. E. A., Sellami, R., Said, M., & Bouderbal, A. (2021). A Novel Hybrid Photovoltaic/Thermal Bi-Fluid (Air/Water) Solar Collector: An Experimental Investigation. Proceedings of the 4th International Conference on Electrical Engineering and Control Applications, ICEECA 2019, Lecture Notes in Electrical Engineering, 682, Springer, Singapore. doi:10.1007/978-981-15-6403-1_47.
[10] Abdullah, A. L., Misha, S., Tamaldin, N., Rosli, M. A. M., & Sachit, F. A. (2019). Numerical analysis of solar hybrid photovoltaic thermal air collector simulation by ANSYS. CFD Letters, 11(2), 1-11.
[11] Yu, Y., Long, E., Chen, X., & Yang, H. (2019). Testing and modelling an unglazed photovoltaic thermal collector for application in Sichuan Basin. Applied Energy, 242, 931–941. doi:10.1016/j.apenergy.2019.03.114.
[12] Arifin, Z., Prasetyo, S. D., Tjahjana, D. D. D. P., Rachmanto, R. A., Prabowo, A. R., & Alfaiz, N. F. (2022). The application of TiO2 nanofluids in photovoltaic thermal collector systems. Energy Reports, 8, 1371–1380. doi:10.1016/j.egyr.2022.08.070.
[13] Simón-Allué, R., Guedea, I., Villén, R., & Brun, G. (2019). Experimental study of Phase Change Material influence on different models of Photovoltaic-Thermal collectors. Solar Energy, 190, 1–9. doi:10.1016/j.solener.2019.08.005.
[14] Shahsavar, A., Jha, P., Arici, M., & Kefayati, G. (2021). A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors. Energy, 220, 119714. doi:10.1016/j.energy.2020.119714.
[15] Prasetyo, S. D., Arifin, Z., Prabowo, A. R., Budiana, E. P., Rosli, M. A. M., Alfaiz, N. F., & Bangun, W. B. (2023). Optimization of Photovoltaic Thermal Collectors Using Fins: A Review of Strategies for Enhanced Solar Energy Harvesting. Mathematical Modelling of Engineering Problems, 10(4), 1235–1248. doi:10.18280/mmep.100416.
[16] Allouhi, A., Kousksou, T., Jamil, A., Bruel, P., Mourad, Y., & Zeraouli, Y. (2015). Solar driven cooling systems: An updated review. Renewable and Sustainable Energy Reviews, 44, 159–181. doi:10.1016/j.rser.2014.12.014.
[17] Shahsavar, A., Eisapour, M., & Talebizadehsardari, P. (2020). Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular. Energy, 208(118409). doi:10.1016/j.energy.2020.118409.
[18] Shahsavar, A. (2021). Experimental evaluation of energy and exergy performance of a nanofluid-based photovoltaic/thermal system equipped with a sheet-and-sinusoidal serpentine tube collector. Journal of Cleaner Production, 287, 125064. doi:10.1016/j.jclepro.2020.125064.
[19] Smaisim, G. F., mohammed, D. B., Abdulhadi, A. M., Uktamov, K. F., Alsultany, F. H., Izzat, S. E., Ansari, M. J., Kzar, H. H., Al-Gazally, M. E., & Kianfar, E. (2022). Nanofluids: properties and applications. Journal of Sol-Gel Science and Technology, 104(1), 1–35. doi:10.1007/s10971-022-05859-0.
[20] Calderón, A., Barreneche, C., Palacios, A., Segarra, M., Prieto, C., Rodriguez"Sanchez, A., & Fernández, A. I. (2019). Review of solid particle materials for heat transfer fluid and thermal energy storage in solar thermal power plants. Energy Storage, 1(4), e63. doi:10.1002/est2.63.
[21] Fudholi, A., Razali, N. F. M., Yazdi, M. H., Ibrahim, A., Ruslan, M. H., Othman, M. Y., & Sopian, K. (2019). TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach. Energy, 183, 305–314. doi:10.1016/j.energy.2019.06.143.
[22] Prasetyo, S. D., Prabowo, A. R., & Arifin, Z. (2023). The use of a hybrid photovoltaic/thermal (PV/T) collector system as a sustainable energy-harvest instrument in urban technology. Heliyon, 9(2), e13390. doi:10.1016/j.heliyon.2023.e13390.
[23] Alawi, O. A., Kamar, H. M., Mallah, A. R., Mohammed, H. A., Sabrudin, M. A. S., Newaz, K. M. S., Najafi, G., & Yaseen, Z. M. (2021). Experimental and theoretical analysis of energy efficiency in a flat plate solar collector using monolayer graphene nanofluids. Sustainability (Switzerland), 13(10), 5416. doi:10.3390/su13105416.
[24] Çiftçi, E., Khanlari, A., Sözen, A., Aytaç, İ., & Tuncer, A. D. (2021). Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation. Renewable Energy, 180, 410–423. doi:10.1016/j.renene.2021.08.081.
[25] Hai, T., & Zhou, J. (2023). Predicting the performance of thermal, electrical and overall efficiencies of a nanofluid-based photovoltaic/thermal system using Elman recurrent neural network methodology. Engineering Analysis with Boundary Elements, 150, 394-399. doi:10.1016/j.enganabound.2023.02.013.
[26] Baranwal, N. K., & Singhal, M. K. (2021). Modeling and Simulation of a Spiral Type Hybrid Photovoltaic Thermal (PV/T) Water Collector Using ANSYS. Advances in Clean Energy Technologies, Springer. doi:10.1007/978-981-16-0235-1_10.
[27] Rosli, M. A. M., Ping, Y. J., Misha, S., Akop, M. Z., Sopian, K., Mat, S., Al-Shamani, A. N., & Saruni, M. A. (2018). Simulation study of computational fluid dynamics on photovoltaic thermal water collector with different designs of absorber tube. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 52(1), 12–22.
[28] Liu, Z., Zhang, Y., Zhang, L., Luo, Y., Wu, Z., Wu, J., Yin, Y., & Hou, G. (2018). Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system. Applied Energy, 228, 1887–1900. doi:10.1016/j.apenergy.2018.07.006.
[29] Gomaa, M. R., Ahmed, M., & Rezk, H. (2022). Temperature distribution modeling of PV and cooling water PV/T collectors through thin and thick cooling cross-fined channel box. Energy Reports, 8, 1144–1153. doi:10.1016/j.egyr.2021.11.061.
[30] Pang, W., Cui, Y., Zhang, Q., & Yan, H. (2020). Enhanced electrical performance for heterojunction with intrinsic thin-layer solar cells based photovoltaic thermal system with aluminum collector. International Communications in Heat and Mass Transfer, 116, 104705. doi:10.1016/j.icheatmasstransfer.2020.104705.
[31] Yandri, E. (2019). Development and experiment on the performance of polymeric hybrid Photovoltaic Thermal (PVT) collector with halogen solar simulator. Solar Energy Materials and Solar Cells, 201, 110066. doi:10.1016/j.solmat.2019.110066.
[32] He, W., Chow, T. T., Ji, J., Lu, J., Pei, G., & Chan, L. S. (2006). Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water. Applied Energy, 83(3), 199–210. doi:10.1016/j.apenergy.2005.02.007.
[33] Sutanto, B., & Indartono, Y. S. (2019). Computational fluid dynamic (CFD) modelling of floating photovoltaic cooling system with loop thermosiphon. AIP Conference Proceedings, 2062, 020011. doi:10.1063/1.5086558.
[34] Jia, Y., Ran, F., Zhu, C., & Fang, G. (2020). Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant. Solar Energy, 196, 625–636. doi:10.1016/j.solener.2019.12.069.
[35] Hasan, M. I., Rageb, A. M. A. R., & Yaghoubi, M. (2012). Investigation of a Counter Flow Microchannel Heat Exchanger Performance with Using Nanofluid as a Coolant. Journal of Electronics Cooling and Thermal Control, 02(03), 35–43. doi:10.4236/jectc.2012.23004.
[36] Rosli, M. A. M., Rou, C. J., Sanusi, N., Saleem, S. N. D. N., Salimen, N., Herawan, S. G., Abdullah, N., Permanasari, A. A., Arifin, Z., & Hussain, F. (2022). Numerical Investigation on Using MWCNT/Water Nanofluids in Photovoltaic Thermal System (PVT). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 99(1), 35–57. doi:10.37934/arfmts.99.1.3557.
[37] Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review. Energy Procedia, 33, 311–321. doi:10.1016/j.egypro.2013.05.072.
[38] Özakın, A. N., & Kaya, F. (2020). Experimental thermodynamic analysis of air-based PVT system using fins in different materials: Optimization of control parameters by Taguchi method and ANOVA. Solar Energy, 197, 199–211. doi:10.1016/j.solener.2019.12.077.
[39] Fan, W., Kokogiannakis, G., & Ma, Z. (2018). A multi-objective design optimisation strategy for hybrid photovoltaic thermal collector (PVT)-solar air heater (SAH) systems with fins. Solar Energy, 163, 315–328. doi:10.1016/j.solener.2018.02.014.
[40] Arifin, Z., Suyitno, S., Tjahjana, D. D. D. P., Juwana, W. E., Putra, M. R. A., & Prabowo, A. R. (2020). The effect of heat sink properties on solar cell cooling systems. Applied Sciences (Switzerland), 10(21), 1–16. doi:10.3390/app10217919.
[41] Mohamed, M. H., Ali, A. M., & Hafiz, A. A. (2015). CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Engineering Science and Technology, an International Journal, 18(1), 1–13. doi:10.1016/j.jestch.2014.08.002.
[42] Setyohandoko, G., Sutanto, B., Rachmanto, R. A., Dwi Prija Tjahjana, D. D., & Arifin, Z. (2020). A numerical approach to study the performance of photovoltaic panels by using aluminium heat sink. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 70(2), 97–105. doi:10.37934/ARFMTS.70.2.97105.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.