Strength Assessment of Stiffened-Panel Structures against Buckling Loads: FE Benchmarking and Analysis
Downloads
Doi: 10.28991/CEJ-2024-010-04-03
Full Text: PDF
Downloads
[2] Allianz. (2021). Safety and shipping review 2021. Allianz Global Corporate & Specialty, Munich, Germany.
[3] Paik, J. K., & Seo, J. K. (2009). Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-Part II: Stiffened panels. Thin-Walled Structures, 47(8–9), 998–1007. doi:10.1016/j.tws.2008.08.006.
[4] Omidali, M., & Khedmati, M. R. (2018). Reliability-based design of stiffened plates in ship structures subject to wheel patch loading. Thin-Walled Structures, 127, 416–424. doi:10.1016/j.tws.2018.02.022.
[5] Doan, V. T., Liu, B., Garbatov, Y., Wu, W., & Guedes Soares, C. (2020). Strength assessment of aluminium and steel stiffened panels with openings on longitudinal girders. Ocean Engineering, 200(107047). doi:10.1016/j.oceaneng.2020.107047.
[6] Pedram, M., & Khedmati, M. R. (2014). The effect of welding on the strength of aluminium stiffened plates subject to combined uniaxial compression and lateral pressure. International Journal of Naval Architecture and Ocean Engineering, 6(1), 39–59. doi:10.2478/IJNAOE-2013-0162.
[7] Guedes Soares, C., & Gordo, J. M. (1997). Design Methods for Stiffened Plates under Predominantly Uniaxial Compression. Marine Structures, 10(6), 465–497. doi:10.1016/s0951-8339(97)00002-6.
[8] Feng, L., Yu, J., Zheng, J., He, W., & Liu, C. (2024). Experimental and numerical study of residual ultimate strength of hull plate subjected to coupled damage of pitting corrosion and crack. Ocean Engineering, 294. doi:10.1016/j.oceaneng.2024.116710.
[9] Cui, J., & Wang, D. (2020). An experimental and numerical investigation on ultimate strength of stiffened plates with opening and perforation corrosion. Ocean Engineering, 205. doi:10.1016/j.oceaneng.2020.107282.
[10] Lee, J., & Kang, Y. J. (2024). Elastic local buckling coefficients of I-shaped beams considering flange–web interaction. Thin-Walled Structures, 195. doi:10.1016/j.tws.2023.111325.
[11] Boissonnade, N., Nseir, J., & Somja, H. (2024). Experimental and numerical investigations towards the lateral torsional buckling of cellular steel beams. Thin-Walled Structures, 195. doi:10.1016/j.tws.2023.111388.
[12] Ghadami, A., Jawdhari, A., & PourMoosavi, G. (2024). Buckling and post-buckling behavior of top flange coped I-beams with slender web panels. Thin-Walled Structures, 198(111640). doi:10.1016/j.tws.2024.111640.
[13] Quinn, D., Murphy, A., McEwan, W., & Lemaitre, F. (2009). Stiffened panel stability behaviour and performance gains with plate prismatic sub-stiffening. Thin-Walled Structures, 47(12), 1457–1468. doi:10.1016/j.tws.2009.07.004.
[14] Esmaeili-Goldarag, F., Babaei, A., & Jafarzadeh, H. (2018). An experimental and numerical investigation of clamping force variation in simple bolted and hybrid (bolted-bonded) double lap joints due to applied longitudinal loads. Engineering Failure Analysis, 91, 327–340. doi:10.1016/j.engfailanal.2018.04.047.
[15] Goldarag, F. E., Barzegar, S., & Babaei, A. (2015). An experimental method for measuring the clamping force in double lap simple bolted and hybrid (bolted-bonded) joints. Transactions of Famena, 39(3), 87–94.
[16] ANSYS. (2020). ANSYS LS-DYNA User's Guide. ANSYS Inc., Pennsylvania, United States.
[17] Ridwan, Putranto, T., Laksono, F. B., & Prabowo, A. R. (2020). Fracture and damage to the material accounting for transportation crash and accident. Procedia Structural Integrity, 27, 38–45. doi:10.1016/j.prostr.2020.07.006.
[18] Prabowo, A. R., Tuswan, T., Prabowoputra, D. M., & Ridwan, R. (2021). Deformation of designed steel plates: An optimisation of the side hull structure using the finite element approach. Open Engineering, 11(1), 1034–1047. doi:10.1515/eng-2021-0104.
[19] Dzulfiqar, M. F., Prabowo, A. R., Ridwan, R., & Nubli, H. (2021). Assessment on the designed structural frame of the automatic thickness checking machine - Numerical validation in FE method. Procedia Structural Integrity, 33, 59–66. doi:10.1016/j.prostr.2021.10.009.
[20] Prabowo, A. R., Ridwan, R., Tuswan, T., Sohn, J. M., Surojo, E., & Imaduddin, F. (2022). Effect of the selected parameters in idealizing material failures under tensile loads: Benchmarks for damage analysis on thin-walled structures. Curved and Layered Structures, 9(1), 258–285. doi:10.1515/cls-2022-0021.
[21] Ridwan, R., Nuriana, W., & Prabowo, A. R. (2022). Energy absorption behaviors of designed metallic square tubes under axial loading: Experiment-based benchmarking and finite element calculation. Journal of the Mechanical Behavior of Materials, 31(1), 443–461. doi:10.1515/jmbm-2022-0052.
[22] Alwan, F. H. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Ridwan, R., & Laksono, F. B. (2022). Assessment of ballistic impact damage on aluminum and magnesium alloys against high velocity bullets by dynamic FE simulations. Journal of the Mechanical Behavior of Materials, 31(1), 595–616. doi:10.1515/jmbm-2022-0064.
[23] Prabowo, A. R., Ridwan, R., & Muttaqie, T. (2022). On The Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates. Designs, 6(3), 46. doi:10.3390/designs6030046.
[24] Saleh, S. M., Majeed, F. H., Al-Salih, O., & Hussain, H. K. (2023). Torsional Behavior of Steel-Concrete-Steel Sandwich Beams with Welded Stirrups as Shear Connectors. Civil Engineering Journal, 9(1), 208-219. doi:10.28991/CEJ-2023-09-01-016.
[25] Prabowo, A. R., Do, Q. T., Cao, B., & Bae, D. M. (2020). Land and marine-based structures subjected to explosion loading: A review on critical transportation and infrastructure. Procedia Structural Integrity, 27, 77–84. doi:10.1016/j.prostr.2020.07.011.
[26] Ridwan, R., Prabowo, A. R., Muhayat, N., Putranto, T., & Sohn, J. M. (2020). Tensile analysis and assessment of carbon and alloy steels using Fe approach as an idealization of material fractures under collision and grounding. Curved and Layered Structures, 7(1), 188-198. doi:10.1515/cls-2020-0016.
[27] Prabowo, A. R., & Bae, D. M. (2019). Environmental risk of maritime territory subjected to accidental phenomena: Correlation of oil spill and ship grounding in the Exxon Valdez's case. Results in Engineering, 4(100035). doi:10.1016/j.rineng.2019.100035.
[28] Pratama, A. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Ridwan, R., Cao, B., & Laksono, F. B. (2023). Hollow tube structures subjected to compressive loading: implementation of the pitting corrosion effect in nonlinear FE analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45, 143. doi:10.1007/s40430-023-04067-3.
[29] Branquinho, M. í., & Malite, M. (2021). Effective slenderness ratio approach for thin-walled angle columns connected by the leg. Journal of Constructional Steel Research, 176, 106434. doi:10.1016/j.jcsr.2020.106434.
[30] Demirci, S. M. E., & Elçiçek, H. (2023). Scientific awareness of marine accidents in Europe: A bibliometric and correspondence analysis. Accident Analysis and Prevention, 190, 107166. doi:10.1016/j.aap.2023.107166.
[31] Chen, J., Di, Z., Shi, J., Shu, Y., Wan, Z., Song, L., & Zhang, W. (2020). Marine oil spill pollution causes and governance: A case study of Sanchi tanker collision and explosion. Journal of Cleaner Production, 273, 122978. doi:10.1016/j.jclepro.2020.122978.
[32] Guimarí£es, L. S. F., de Carvalho-Junior, L., Façanha, G. L., Resende, N. da S., Neves, L. M., & Cardoso, S. J. (2023). Meta-analysis of the thermal pollution caused by coastal nuclear power plants and its effects on marine biodiversity. Marine Pollution Bulletin, 195, 115452. doi:10.1016/j.marpolbul.2023.115452.
[33] Prabowo, A. R., Cahyono, S. I., & Sohn, J. M. (2019). Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents. Theoretical and Applied Mechanics Letters, 9(5), 320–327. doi:10.1016/j.taml.2019.05.002.
[34] Yildiz, S., Uğurlu, Ö., Wang, J., & Loughney, S. (2021). Application of the HFACS-PV approach for identification of human and organizational factors (HOFs) influencing marine accidents. Reliability Engineering and System Safety, 208, 107395. doi:10.1016/j.ress.2020.107395.
[35] Bolat, P., & Yongxing, J. (2013). Risk assessment of potential catastrophic accidents for transportation of special nuclear materials through Turkish Straits. Energy Policy, 56, 126–135. doi:10.1016/j.enpol.2012.12.010.
[36] Cao, B., Bae, D.-M., Sohn, J.-M., Prabowo, A. R., Chen, T. H., & Li, H. (2016). Numerical Analysis for Damage Characteristics Caused by Ice Collision on Side Structure. Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology, OMAE2016-54727, 1-7. doi:10.1115/omae2016-54727.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.