Effect of Silane and Silicate based Penetrants against Corrosion of Steel with Partial Cover Thickness

Muhammad Afaq Khalid, Shinichi Miyazato, Tatsuya Minato, Hibiki Mizuguchi


The partial cover thickness of reinforced concrete structures near the coastline enhances the early corrosion onset, which reduces the service life. As a countermeasure under the preventive maintenance approach, to delay early corrosion onset in structures with partial cover thickness and increase durability throughout the service life, this study used silane and silicate-based surface penetrants. Mortar specimens with a partial cover thickness and embedded, specially segmented bars were prepared. Both penetrants were applied to specimens with partial cover thicknesses (20 and 7.5 mm). Further, electrochemical methods such as macrocell current, microcell current, electric resistivity, and potentiodynamic polarization curves were used to assess the corrosion resistance before and after coating. The penetration depth of silane was measured visually, and the Vickers hardness test was used for the silicate penetrant. The “equivalent cover approach” was adopted to evaluate the performance of penetrants throughout their service lives. Results revealed that the total corrosion current density decreased by 79% for specimens coated with silane and 52% for silicate penetrant, whereas no change was observed in the uncoated specimens. Based on the equivalent cover approach, the silane penetrant was determined to be most effective in delaying the corrosion onset and propagation time for cover thicknesses of 60 and 50 mm at 100 m distance against 70 mm, and for 40 and 30 mm against 50 mm at 250 m from the coastline. Further, the silicate-based penetrant was only effective for a deficient cover thickness of 5 mm against the specified cover thicknesses at a distance of 100 and 250 m from the sea coast.


Doi: 10.28991/CEJ-2023-09-12-02

Full Text: PDF


Cementitious Material; Corrosion Rate; Corrosion Onset; Silane Surface Penetrant; Silicate Surface Penetrant.


ACI-117-10. (2010). Specification for Tolerances for Concrete Construction and Materials (ACI 117-10) and Commentary. ACI Committee, American Concrete Institute, Indiana, United States, 1–76.

BS EN 206-1 (2012). Concrete – Complementary British Standard to BS EN 206-1 – Part 2: Specification for constituent materials and concrete. British Standards Institution (BSI), London, United Kingdom.

JSCE (2007). Standard Specifications for Concrete Structures. JSCE Guidelines for Concrete No. 15, Tokyo, Japan.

Muhammad, A. K, Miyazato, S., and Sugawara, N. (2023). Influence of Cover depth and mortar quality on Rebar corrosion under aggressive chloride environment”. Proceedings of the 4th Asian Concrete Federation symposium on emerging technologies for structural longevity (ACF2023_ETSL), Shenzhen, China.

ABNT NBR. 6118. (2014). Projeto de Estruturas de Concreto–Procedimento. Rio de Janeiro, Brazil, 238.

Petcherdchoo, A. (2016). Pseudo-coating model for predicting chloride diffusion into surface-coated concrete in tidal zone: Time-dependent approach. Cement and Concrete Composites, 74, 88–99. doi:10.1016/j.cemconcomp.2016.08.009.

Liang, Y., & Wang, L. (2020). Prediction of corrosion-induced cracking of concrete cover: A critical review for thick-walled cylinder models. Ocean Engineering, 213, 107688. doi:10.1016/j.oceaneng.2020.107688.

Baroghel-Bouny, V. (2007). Concrete design for a given structure service life: durability management with regard to reinforcement corrosion and alkali-silica reaction: state of the art and guide for the implementation of a predictive performance approach based upon durability indicators. Association Française de Génie Civil, Paris, France.

Bentur, A., Diamond, S., & Berke, N. S. (1997). Steel corrosion in concrete : fundamentals and civil engineering practice. CRC Press, Florida, United States.

Truong, Q. C., El Soueidy, C. P., Li, Y., & Bastidas-Arteaga, E. (2022). Probability-based maintenance modeling and planning for reinforced concrete assets subjected to chloride ingress. Journal of Building Engineering, 54, 104675. doi:10.1016/j.jobe.2022.104675.

JSCE (2012). Standards specifications for Design. Japan society for Civil Engineers (JSCE), Tokyo, Japan. Available online: https://www.jsce-int.org/about/guideline (accessed on June 2023).

Ma, Y., Guo, Z., Wang, L., & Zhang, J. (2017). Experimental investigation of corrosion effect on bond behavior between reinforcing bar and concrete. Construction and Building Materials, 152, 240–249. doi:10.1016/j.conbuildmat.2017.06.169.

Bastidas-Arteaga, E., El Soueidy, C. P., Amiri, O., & Nguyen, P. T. (2020). Polynomial chaos expansion for lifetime assessment and sensitivity analysis of reinforced concrete structures subjected to chloride ingress and climate change. Structural Concrete, 21(4), 1396–1407. doi:10.1002/suco.201900398.

Khalid, M. A., Miyazato, S., Mizuguchi, H., & Miyaguchi, K. (2023). Performance Evaluation of Lithium Nitrite-Based Gel against Corrosion of Rebar with Partial Short Cover Depth in Chloride Environment. Engineering Proceedings, 55(1), 35. doi:10.3390/engproc2023055035.

Gu, X., Dong, Z., & Jin, Z. (2018). Macrocell corrosion between crossed steel rebars embedded in concrete under chloride environments. MATEC Web of Conferences, 199, 04005. doi:10.1051/matecconf/201819904005.

Hansson, C. M., Poursaee, A., & Laurent, A. (2006). Macrocell and microcell corrosion of steel in ordinary Portland cement and high performance concretes. Cement and Concrete Research, 36(11), 2098–2102. doi:10.1016/j.cemconres.2006.07.005.

Chen, L., & Su, R. K. L. (2021). Corrosion rate measurement by using polarization resistance method for microcell and macrocell corrosion: Theoretical analysis and experimental work with simulated concrete pore solution. Construction and Building Materials, 267, 121003. doi:10.1016/j.conbuildmat.2020.121003.

Miyazato, S., & Otsuki, N. (2022). Measurement Method for Macrocell Corrosion in Concrete Specimen using a Segmented Steel Bar. Journal of Advanced Concrete Technology, 20(3), 222–235. doi:10.3151/jact.20.222.

Xian, Y. Z., Wittmann, F. H., Zhao, T. J., & Giessler, S. (2007). Chloride penetration into integral water repellent concrete/eindringen von chloriden in integral hydrophobierten beton. Restoration of Buildings and Monuments, 13(1), 17-24. doi:10.1515/rbm-2007-6103.

Freitag, S. A., & Bruce, S. M. (2010). The influence of surface treatments on the service lives of concrete bridges. Wellington, NewZealand: New Zealand Transport Agency.

Pan, X., Shi, Z., Shi, C., Ling, T. C., & Li, N. (2017). A review on concrete surface treatment Part I: Types and mechanisms. Construction and Building Materials, 132, 578–590. doi:10.1016/j.conbuildmat.2016.12.025.

Schueremans, L., Van Gemert, D., & Giessler, S. (2007). Chloride penetration in RC-structures in marine environment - Long term assessment of a preventive hydrophobic treatment. Construction and Building Materials, 21(6), 1238–1249. doi:10.1016/j.conbuildmat.2006.05.006.

Christodoulou, C., Goodier, C. I., Austin, S. A., Webb, J., & Glass, G. K. (2013). Long-term performance of surface impregnation of reinforced concrete structures with silane. Construction and Building Materials, 48, 708–716. doi:10.1016/j.conbuildmat.2013.07.038.

Zhan, H., & Wittmann, F. H. (2014). Relation between the Silicon Resin Profiles in Water Repellent Treated Concrete and the Effectiveness as a Chloride Barrier. Restoration of Buildings and Monuments, 11(1), 35–46. doi:10.1515/rbm-2005-5926.

Dai, J., Akira, Y., Yokota, H., & Wittmann, F. H. (2014). Surface Impregnation of Pre-conditioned Concrete Subjected to Seawater Immersion Test. Restoration of Buildings and Monuments, 13(4), 229–240. doi:10.1515/rbm-2007-6141.

Zhang, P., Shang, H., Hou, D., Guo, S., & Zhao, T. (2017). The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials. Advances in Materials Science and Engineering, 2017. doi:10.1155/2017/8260103.

Hosoda, A., Matsuda, Y., & Kobayashi, K. (2010). Optimum surface protection system with silane type water repellents. Journal of Advanced Concrete Technology, 8(3), 291–302. doi:10.3151/jact.8.291.

Zhao, J., Gao, X., Chen, S., Lin, H., Li, Z., & Lin, X. (2022). Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review. Composites Part B: Engineering, 243, 110104. doi:10.1016/j.compositesb.2022.110104.

Liu, G., Gjørv, O. E., & Årskog, V. (2010). Effect of concrete surface hydrophobation against chloride penetration. Concrete under Severe Conditions: Environment and Loading - Proceedings of the 6th International Conference on Concrete under Severe Conditions, CONSEC’10, 2, 1157–1163. doi:10.1201/b10552-152.

Jones, M. R., Dhir, R. K., & Gill, J. P. (1995). Concrete surface treatment: Effect of exposure temperature on chloride diffusion resistance. Cement and Concrete Research, 25(1), 197–208. doi:10.1016/0008-8846(94)00127-K.

Basheer, P. A. M., Basheer, L., Cleland, D. J., & Long, A. E. (1997). Surface treatments for concrete: Assessment methods and reported performance. Construction and Building Materials, 11(7–8), 413–429. doi:10.1016/S0950-0618(97)00019-6.

Ibrahim, M., Al-Gahtani, A. S., Maslehuddin, M., & Dakhil, F. H. (1999). Use of Surface Treatment Materials to Improve Concrete Durability. Journal of Materials in Civil Engineering, 11(1), 36–40. doi:10.1061/(asce)0899-1561(1999)11:1(36).

Ibrahim, M., Al-Gahtani, A. S., Maslehuddin, M., & Almusallam, A. A. (1997). Effectiveness of concrete surface treatment materials in reducing chloride-induced reinforcement corrosion. Construction and Building Materials, 11(7–8), 443–451. doi:10.1016/s0950-0618(97)00023-8.

Sivasankar, A., Arul Xavier Stango, S., & Vedalakshmi, R. (2013). Quantitative estimation on delaying of onset of corrosion of rebar in surface treated concrete using sealers. Ain Shams Engineering Journal, 4(4), 615–623. doi:10.1016/j.asej.2013.01.007.

Courard, L., Zhao, Z., & Michel, F. (2021). Influence of hydrophobic product nature and concentration on carbonation resistance of cultural heritage concrete buildings. Cement and Concrete Composites, 115, 103860. doi:10.1016/j.cemconcomp.2020.103860.

Dai, J. G., Akira, Y., Wittmann, F. H., Yokota, H., & Zhang, P. (2010). Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks. Cement and Concrete Composites, 32(2), 101–109. doi:10.1016/j.cemconcomp.2009.11.001.

Li, J., Yi, Z., & Xie, Y. (2012). Progress of silane impregnating surface treatment technology of concrete structure. Mater. Rev, 26(3), 120-125. doi:10.3969/j.issn.1005-023X.2012.03.024.

Moon, H. Y., Shin, D. G., & Choi, D. S. (2007). Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system. Construction and Building Materials, 21(2), 362–369. doi:10.1016/j.conbuildmat.2005.08.012.

Kupwade-Patil, K., Cardenas, H. E., Gordon, K., & Lee, L. S. (2012). Corrosion Mitigation in Reinforced Concrete Beams via Nanoparticle Treatment. ACI Materials Journal, 109(6), 617-626. doi:10.14359/51684159.

Deng, G., He, Y., Lu, L., Wang, F., & Hu, S. (2023). A preliminary study on the efficiency of the steel slag-based spraying carbonation layer in improving the durability of cement-based products. Cement and Concrete Composites, 136, 104899. doi:10.1016/j.cemconcomp.2022.104899.

Franzoni, E., Pigino, B., & Pistolesi, C. (2013). Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cement and Concrete Composites, 44, 69–76. doi:10.1016/j.cemconcomp.2013.05.008.

Miyazaki, Y., & Miyazato, S. (2018). Permeability of mortar with surface penetrant after weathering test for 20 years. Proceedings of Proceedings of Repair, Reinforcement, and Upgarding of Concrete Structures, Japan.

Hazehara, H., Soeda, M., & Hashimoto, S. (2015). Fundamental study on characteristics of silicate based surface penetrants and effects of improvement on concrete structures. Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management - Proceedings of the 4th International Symposium on Life-Cycle Civil Engineering, IALCCE 2014, 2014, 971–978. doi:10.1201/b17618-141.

Miyazato, S. I., & Otsuki, N. (2010). Steel corrosion induced by chloride or carbonation in mortar with bending cracks or joints. Journal of Advanced Concrete Technology, 8(2), 135–144. doi:10.3151/jact.8.135.

Padilla, V., & Alfantazi, A. (2014). Corrosion film breakdown of galvanized steel in sulphate–chloride solutions. Construction and Building Materials, 66, 447-457. doi:10.1016/j.conbuildmat.2014.05.053.

Lataste, J. F., Villain, G., & Balayssac, J. P. (2018). Electrical methods. Non-destructive Testing and Evaluation of Civil Engineering Structures, 139-172. doi:10.1016/B978-1-78548-229-8.50004-2.

Stern, M., A. L. G. (1957). Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. Journal of the Electrochemical Society, 104(1), 56.

Andrade, C., & González, J. A. (1978). Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Materials and Corrosion, 29(8), 515–519. doi:10.1002/maco.19780290804.

Katayama, H. (2014). Surface and interfacial analysis using electrochemical impedance measurement. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 78(11), 419–425. doi:10.2320/jinstmet.JB201402.

Chandra Paul, S. (2018). A Review on Reinforcement Corrosion Mechanism and Measurement Methods in Concrete. Civil Engineering Research Journal, 5(3), 555–661. doi:10.19080/cerj.2018.05.555661.

Andrade, C. (2019). Propagation of Reinforcement Corrosion: Principles, Testing And Modelling. Materials and Structures, 52(1), 2. doi:10.1617/s11527-018-1301-1.

Suryanto, B., Kim, J., McCarter, W. J., Starrs, G., & Aitken, M. W. (2020). Assessing the performance and transport properties of concrete using electrical property Measurements. Journal of Advanced Concrete Technology, 18(7), 437–455. doi:10.3151/JACT.18.437.

Tsuru, T., Maeda, R., & Haruyama, S. (1979). Application of a-C Corrosion Monitor to Localized Corrosion. Boshoku Gijutsu, 28(12), 638–644. doi:10.3323/jcorr1974.28.12_638.

ASTM Standard G61-86. (2010). Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion Susceptibility of Iron, Nickel or Cobalt Based Aalloys. Annual Book of ASTM Standards, 86, G61-86. ASTM International, Pennsylvania, United States.

JSCE-K 572 (2012). JSCE Standards: Test Methods of Silicate-Type Surface Penetrants for Concrete Structures. Japan society for Civil Engineers (JSCE), 68(4), 366-384. doi:10.2208/jscejmcs.68.366.

Kondo, T., Kuroiwa, D., Miyazato, S. I., Shimamura, K., & Takahashii, Y. (2023). Quantitative Evaluation on Reforming Effect of Silicate-based Surface Penetrants Using Vickers Hardness as an Index. Zairyo/Journal of the Society of Materials Science, Japan, 72(7), 507–513. doi:10.2472/jsms.72.507.

Miyazato, S., & Kuroiwa, D. (2014). Determination of chloride ion diffusion coefficient in outer layer of concrete with silicate-type surface penetrant. In G. et.al (Ed.), Concrete Solutions - Proceedings of Concrete Solutions, 5th International Conference on Concrete Repair, Taylor & Francis Group, 409–416. doi:10.1201/b17394-64.

Takewaka, K. (2012). Toward Establishing Recommendations for Silicate-based Surface Impregnation Method for Concrete Structures. Concrete Journal, 50(10), 889-895. doi:10.3151/coj.50.889.

Andrade, C., Alonso, C., Gulikers, J., Polder, R., Cigna, R., Vennesland, Salta, M., Raharinaivo, A., & Elsener, B. (2004). Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Materials and Structures, 37(273), 623–643. doi:10.1617/13952.

Shen, L., Jiang, H., Cao, J., & Zhang, H. (2019). The effect of electro-migrating 3-Aminopropyltriethoxysilane on the improvement of the reinforced concrete durability. Construction and Building Materials, 214, 101–110. doi:10.1016/j.conbuildmat.2019.04.130.

Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. doi:10.1016/j.conbuildmat.2020.121240.

Bertolini, L., & Redaelli, E. (2009). Depassivation of steel reinforcement in case of pitting corrosion: detection techniques for laboratory studies. Materials and Corrosion, 60(8), 608–616. doi:10.1002/maco.200905276.

Song, G. (2000). Theoretical analysis of the measurement of polarization resistance in reinforced concrete. Cement and Concrete Composites, 22(6), 407–415. doi:10.1016/S0958-9465(00)00040-8.

Jaggi, S., Elsener, B., & Bohni, H. (2000). Oxygen Reduction on Mild Steel and Stainless Steel in Alkaline Solutions. Eurocorr 1999 Proceedings (London), 44–11.

Hanaoka, D., Amino, T., Habuchi, T., Miyazato, S., & Tabata, S. (2015). A study on prediction method of chloride ion penetration into concrete with surface penetrants. Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management - Proceedings of the 4th International Symposium on Life-Cycle Civil Engineering, IALCCE 2014, 2014, 950–955. doi:10.1201/b17618-138.

Zarzuela, R., Luna, M., Coneo, J. G., Gemelli, G., Andreouli, D., Kaloidas, V., & Mosquera, M. J. (2023). Multifunctional silane-based superhydrophobic/impregnation treatments for concrete producing CSH gel: Validation on mockup specimens from European heritage structures. Construction and Building Materials, 367, 130258. doi:10.1016/j.conbuildmat.2022.130258.

Tanaka, H., Kurita, M., & Miyagawa, T. (2013). Prediction of chloride ion penetration for concrete impregnated with silane water-repellent material. Sustainable Construction Materials and Technologies, CRC Press, Florida, United States.

Sakr, M. R., & Bassuoni, M. T. (2021). Silane and methyl-methacrylate based nanocomposites as coatings for concrete exposed to salt solutions and cyclic environments. Cement and Concrete Composites, 115, 103841. doi:10.1016/j.cemconcomp.2020.103841.

Otieno, M., Ikotun, J., & Ballim, Y. (2019). Experimental investigations on the influence of cover depth and concrete quality on time to cover cracking due to carbonation-induced corrosion of steel in RC structures in an urban, inland environment. Construction and Building Materials, 198, 172–181. doi:10.1016/j.conbuildmat.2018.11.215.

JSCE No. 17. (2007). Guidelines for Concrete No.17; Standard Specifications for Concrete Structures: Maintenance. Japan Society of Civil Engineers, Tokyo, Japan.

Medeiros, M., & Helene, P. (2008). Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Materials and Structures, 41, 59-71. doi:10.1617/s11527-006-9218-5.

Kobayashi, S., Kurata, K., Hashimoto, M., Hayashi, D., Hasegawa, Y., Maeyama, A., and Endoh, H., (2023). 20-year exposure test results for silane-silaxone surface penetrant. Proceedings of 78th annual Academic lecture, National conference of the Japan Society of Civil Engineers, 2023 (Sep), East Hiroshima, V-316. (In Japanese).

Zeng, Y., Zhang, D. wei, Dai, J. G., Fang, M. shan, & Jin, W. liang. (2020). Determining the service life extension of silane treated concrete structures: A probabilistic approach. Construction and Building Materials, 249, 118802. doi:10.1016/j.conbuildmat.2020.118802.

Petcherdchoo, A. (2015). Environmental impacts of combined repairs on marine concrete structures. Journal of Advanced Concrete Technology, 13(3), 205–213. doi:10.3151/jact.13.205.

Kuang, Y., Sakoi, Y., Takashima, N., Aba, M., & Tsukinaga, Y. (2022). Evaluation of the chloride ions penetration into concrete structure with the surface penetrants served in cold marine environment for 20 years. The 7th International Conference on Durability of Concrete Structures, ICDCS 2022, Shandong, China.

Miyazato, S., & Takechi, S. (2016). Scenario designs from preemptive maintenance to preventive maintenance for aging concrete bridges with chloride attack”. Proceedings of the EASEC-14 Special Session 3, The Fourteenth East Asia-Pacific Conference on Structural Engineering and Construction, 14, 319-328.

Funakawa, I., Ushijima, S., Miyagawa, T., & Yamamoto, Y. (2005). Outline of Recommendation for Concrete Repair and Surface Protection of Concrete Structures by JSCE. Concrete Journal, 43(11), 3–11. doi:10.3151/coj1975.43.11_3.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-12-02


  • There are currently no refbacks.

Copyright (c) 2024 Muhammad Afaq Khalid, Miyazato Shinichi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.