Stress Concentration Factors in KT-Joints Subjected to Complex Bending Loads Using Artificial Neural Networks

Mohsin Iqbal, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Afzal Khan, Muhammad Faizan

Abstract


Fatigue analysis of tubular joints based on peak stress concentration factor (SCF) is critical for offshore structures as it determines the fatigue life of the joint and possibly the overall structure. It is known that peak SCF occurs at the crown position for in-plane bending (IPB) and at the saddle position for out-of-plane bending (OPB). Tubular joints of offshore structures are under multiplanar bending, comprising IPB and OPB. When a joint is subjected to IPB and OPB loads simultaneously, the peak SCF occurs somewhere between the crown and the saddle. However, existing equations estimate SCF at the crown and saddle only when a joint is subjected to IPB or OPB. It was found that the position and magnitude of peak SCF under simultaneous IPB and OPB depend on the relative magnitudes of these uniplanar load components. The crown and saddle position SCF can be substantially lower than the cumulative peak SCF. Empirical models are proposed for computing peak SCF for KT-joints subjected to multiplanar bending. These models were developed through regression analysis using artificial neural networks (ANN). The ANN training data was generated through 3716 ANSYS finite element simulations. The empirical model was validated using models available in the literature and can determine peak SCF with an error of less than 1.5%.

 

Doi: 10.28991/CEJ-2024-010-04-04

Full Text: PDF


Keywords


Fatigue Analysis; Stress Concentration Factor; Empirical Modeling; ANN; Multiplanar Bending Load; Tubular KT-Joint.

References


Vieira Ávila, B., Correia, J., Carvalho, H., Fantuzzi, N., De Jesus, A., & Berto, F. (2022). Numerical analysis and discussion on the hot-spot stress concept applied to welded tubular KT joints. Engineering Failure Analysis, 135. doi:10.1016/j.engfailanal.2022.106092.

Zhou, K., Zuo, J., Wang, W., & Bao, S. (2020). Stress Concentration Factors for Multi-planar Tubular Joints Subjected to Axial Loading. E3S Web of Conferences, 213. doi:10.1051/e3sconf/202021303014.

Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Rasul, A. (2023). Rehabilitation Techniques for Offshore Tubular Joints. Journal of Marine Science and Engineering, 11(2), 461. doi:10.3390/jmse11020461.

Maheswaran, J., & Siriwardane, S. C. (2016). Fatigue life estimation of tubular joints - A comparative study. Fatigue & Fracture of Engineering Materials & Structures, 39(1), 30–46. doi:10.1111/ffe.12314.

Hoon, K. H., Wong, L. K., & Soh, A. K. (2001). Experimental investigation of a doubler-plate reinforced tubular T-joint subjected to combined loadings. Journal of Constructional Steel Research, 57(9), 1015–1039. doi:10.1016/S0143-974X(01)00023-2.

Kuang, J. G., Potvin, A. B., & Leick, R. D. (1975). Stress concentration in tubular joints. Proceedings of the Annual Offshore Technology Conference, doi:10.4043/2205-MS.

Wordsworth, A.C. (1981).Stress Concentration Factors at K and KT tubular joints. Fatigue in Offshore Structural Steels , Thomas Telford Publishing, London, United Kingdom.

Wordsworth, A. C., & Smedley, G. P. (1978). Stress concentrations at unstiffened tubular joints. European Offshore Steels Research Seminar, 27-29 November, 1978, Abington Hall, United Kingdom.

Efthymiou, M. (1988). Development of SCF formulae and generalized influence functions for use in fatigue analysis. OTJ 88. Recent Developments in Tubular Joints Technology, Surrey, United Kingdom.

Hellier, A. K., Connolly, M. P., & Dover, W. D. (1990). Stress concentration factors for tubular Y- and T-joints. International Journal of Fatigue, 12(1), 13–23. doi:10.1016/0142-1123(90)90338-F.

Lloyd’s Register. (1992). Stress Concentration Factors for Tubular Complex Joints, Lloyd's Register of Shipping for health and Safety Executive, Offshore Technology Report, (OTH 91 353), 1-106.

Smedley, P., & Fisher, P. (1991). Stress concentration factors for simple tubular joints. International Ocean and Polar Engineering Conference (ISOPE), 11-16 August, 1991, Edinburgh, United Kingdom.

Morgan, M. R., & Lee, M. M. K. (1997). New parametric equations for stress concentration factors in tubular K-joints under balanced axial loading. International Journal of Fatigue, 19(4), 309–317. doi:10.1016/S0142-1123(96)00081-3.

Morgan, M. R., & Lee, M. M. K. (1998). Parametric equations for distributions of stress concentration factors in tubular K-joints under out-of-plane moment loading. International Journal of Fatigue, 20(6), 449–461. doi:10.1016/S0142-1123(98)00011-5.

DNV. (2016). DNVGL-RP-C203. Fatigue design of offshore structures. DNV, Bærum, Norway.

Norsok: N-004. (2004). design of steel structures. Standards Norway, Oslo, Norway.

Zhao, X.-L., Herion, S., Packer, JA., Puthli, RS., Sedlacek, G., Wardenier, J., Weynand, K., van Wingerde, AM., & Yeomans, NF. (2000). Design guide for circular and rectangular hollow section welded joints under fatique loading. In Design guide for circular and rectangular hollow section welded joints under fatique loading, 1-121. TUV-Verlag, Koln, Germany.

Ahmadi, H., & Zavvar, E. (2015). Stress concentration factors induced by out-of-plane bending loads in ring-stiffened tubular KT-joints of jacket structures. Thin-Walled Structures, 91, 82–95. doi:10.1016/j.tws.2015.02.011.

Ahmadi, H., & Lotfollahi-Yaghin, M. A. (2015). Stress concentration due to in-plane bending (IPB) loads in ring-stiffened tubular KT-joints of offshore structures: Parametric study and design formulation. Applied Ocean Research, 51, 54–66. doi:10.1016/j.apor.2015.02.009.

Ahmadi, H., Yeganeh, A., Mohammadi, A. H., & Zavvar, E. (2016). Probabilistic analysis of stress concentration factors in tubular KT-joints reinforced with internal ring stiffeners under in-plane bending loads. Thin-Walled Structures, 99, 58–75. doi:10.1016/j.tws.2015.11.010.

Ahmadi, H. (2016). A probability distribution model for SCFs in internally ring-stiffened tubular KT-joints of offshore structures subjected to out-of-plane bending loads. Ocean Engineering, 116, 184–199. doi:10.1016/j.oceaneng.2016.02.037.

Ahmadi, H., Ali, Z.N. (2016). Stress Concentration Factors in Uniplanar Tubular KT-Joints of Jacket Structures Subjected to In-Plane Bending Loads, International Journal of Maritime Technology, 5, 27-39.

Ahmadi, H., & Zavvar, E. (2016). The effect of multi-planarity on the SCFs in offshore tubular KT-joints subjected to in-plane and out-of-plane bending loads. Thin-Walled Structures, 106, 148–165. doi:10.1016/j.tws.2016.04.020.

Zavvar, E., Hectors, K., & De Waele, W. (2021). Stress concentration factors of multi-planar tubular KT-joints subjected to in-plane bending moments. Marine Structures, 78(March), 103000. doi:10.1016/j.marstruc.2021.103000.

Zavvar, E., Sadat Hosseini, A., & Lotfollahi-Yaghin, M. A. (2021). Stress concentration factors in steel tubular KT-connections with FRP-Wrapping under bending moments. Structures, 33, 4743–4765. doi:10.1016/j.istruc.2021.06.100.

Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Nouman, H. (2023). Empirical modeling of stress concentration factors using finite element analysis and artificial neural networks for the fatigue design of tubular KT-joints under combined loading. Fatigue and Fracture of Engineering Materials and Structures, 46(11), 4333–4349. doi:10.1111/ffe.14122.

Yeoh, S. K., Soh, A. K., & Soh, C. K. (1995). Behaviour of tubular T-joints subjected to combined loadings. Journal of Constructional Steel Research, 32(3), 259–280. doi:10.1016/0143-974X(95)93898-E.

Gulati, K. C., Wang, W. J., & Kan, D. K. Y. (1982). An analytical study of stress concentration effects in multibrace joints under combined loading. Proceedings of the Annual Offshore Technology Conference, OTC-4407-MS, Texas, United States. doi:10.4043/4407-ms.

ARSEM. (1987). Design guides for offshore structures - welded tubular joints, Vol. 1, Technip, Association de recherche sur les structures métalliques marines (ARSEM), Paris, France.

American Petroleum Institute (API). (2014). API Recommended Practice 2A-WSD. Planning, Designing, and Constructing Fixed Offshore Platforms—Working Stress Design. American Petroleum Institute (API), Washington, United States.

Ahmadi, H., Lotfollahi-yaghin, M. A., & Yong-bo, S. (2013). Experimental and Numerical Investigation of Geometric SCFs in Internally Ring-Stiffened Tubular KT-Joints of Offshore Structures. Journal of the Persian Gulf, 43(1), 7–8.

Ahmadi, H. (2019). Probabilistic analysis of the DoB in axially-loaded tubular KT-joints of offshore structures. Applied Ocean Research, 87, 64–80. doi:10.1016/j.apor.2019.03.018.

van Wingerde, A. M., Packer, J. A., & Wardenier, J. (1995). Criteria for the fatigue assessment of hollow structural section connections. Journal of Constructional Steel Research, 35(1), 71–115. doi:10.1016/0143-974X(94)00030-I.

N’Diaye, A., Hariri, S., Pluvinage, G., & Azari, Z. (2007). Stress concentration factor analysis for notched welded tubular T-joints. International Journal of Fatigue, 29(8), 1554–1570. doi:10.1016/j.ijfatigue.2006.10.030.

Iqbal, M., Karuppanan, S., Perumal, V., Ovinis, M., & Hina, A. (2023). An Artificial Neural Network Model for the Stress Concentration Factors in KT-Joints Subjected to Axial Compressive Load. Materials Science Forum, 1103, 163–175. doi:10.4028/p-ypo50i.

Vijaya Kumar, S. D., Lo, M., Karuppanan, S., & Ovinis, M. (2022). Empirical Failure Pressure Prediction Equations for Pipelines with Longitudinal Interacting Corrosion Defects Based on Artificial Neural Network. Journal of Marine Science and Engineering, 10(6). doi:10.3390/jmse10060764.

Soh, A. K., & Soh, C. K. (1995). Stress analysis of axially loaded T tubular joints reinforced with doubler plates. Computers and Structures, 55(1), 141–149. doi:10.1016/0045-7949(94)00412-V.

Ahmadi, H., & Zavvar, E. (2020). Degree of bending (DoB) in offshore tubular KT-joints under the axial, in-plane bending (IPB), and out-of-plane bending (OPB) loads. Applied Ocean Research, 95(2020), 102015. doi:10.1016/j.apor.2019.102015.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Mohsin Iqbal, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis, Afzal Khan, Muhammad Faizan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message