Monitoring Physiological State of Drivers Using In-Vehicle Sensing of Non-Invasive Signal

Siti Fatimah Abdul Razak, Sharifah N. M. Sayed Ismail, Bryan Hii Ben Bin, Sumendra Yogarayan, Mohd Fikri Azli Abdullah, Noor Hisham Kamis


Eighty percent of traffic accidents are caused by human error, called hypo vigilance, stemming from drowsiness, stress, or distraction while driving. This poses a significant threat to road safety. An electrocardiogram (ECG) is often used to monitor drivers' health. Thus, enhancing vehicles with Internet of Things (IoT) sensors and local analytical databases becomes crucial for real-time detection and transmission of relevant health data to avoid things that compromise road traffic safety. This study introduces a cost-effective in-vehicle ECG sensing prototype using an AD8232 sensor integrated with an Arduino Uno and an AD8232 Wi-Fi module placed on the steering wheel to monitor the driver's heart signal while driving. Short-term heart rate variability (HRV) features were computed through Python from the acquired ECG data, and supervised machine learning techniques such as AdaBoost, Random Forest, Naïve Bayes, and Support Vector Machine (SVM) classified the features into normal and abnormal classes. Naive Bayes exhibited the highest accuracy (90.91%) and F1 score (85.71%), surpassing Random Forest's lower accuracy (63.64%) and F1 score (50.00%). These findings indicate the prototype's potential as a valuable tool for ensuring safe and efficient driving, proposing integration into standard vehicle safety systems for enhanced road traffic safety.


Doi: 10.28991/CEJ-2024-010-04-014

Full Text: PDF


ADAS; Driver Monitoring System; ECG; Vehicle Safety.


Lady, L., & Umyati, A. (2023). The Effects of Using Electronic Maps While Driving on The Driver Performance. International Journal of Technology, 14(5), 1029–1038. doi:10.14716/ijtech.v14i5.4778.

Hayawi, A. A., & Waleed, J. (2019). Driver’s Drowsiness Monitoring and Alarming Auto-System Based on EOG Signals. 2019 2nd International Conference on Engineering Technology and Its Applications, IICETA 2019, 214–218. doi:10.1109/IICETA47481.2019.9013000.

Zainy, M. L. S., Pratama, G. B., Kurnianto, R. R., & Iridiastadi, H. (2023). Fatigue Among Indonesian Commercial Vehicle Drivers: A Study Examining Changes in Subjective Responses and Ocular Indicators. International Journal of Technology, 14(5), 1039–1048. doi:10.14716/ijtech.v14i5.4856.

Zuraida, R., & Abbas, B. S. (2020). The factors influencing fatigue related to the accident of intercity bus drivers in Indonesia. International Journal of Technology, 11(2), 342–352. doi:10.14716/ijtech.v11i2.3792.

Minea, M., Dumitrescu, C. M., & Costea, I. M. (2021). Advanced e-call support based on non-intrusive driver condition monitoring for connected and autonomous vehicles. Sensors, 21(24), 8272. doi:10.3390/s21248272.

Mateos-García, N., Gil-González, A. B., Luis-Reboredo, A., & Pérez-Lancho, B. (2023). Driver Stress Detection from Physiological Signals by Virtual Reality Simulator. Electronics, 12(10), 2179–2189. doi:10.3390/electronics12102179.

Goldsworthy, J., Watling, C. N., Rose, C., & Larue, G. (2024). The effects of distraction on younger drivers: A neurophysiological perspective. Applied Ergonomics, 114, 104–127. doi:10.1016/j.apergo.2023.104147.

Lan, Z., Zhao, J., Liu, P., Zhang, C., Lyu, N., & Guo, L. (2024). Driving fatigue detection based on fusion of EEG and vehicle motion information. Biomedical Signal Processing and Control, 92. doi:10.1016/j.bspc.2024.106031.

Yang, D., Wang, Y., Wei, R., Guan, J., Huang, X., Cai, W., & Jiang, Z. (2024). An efficient multi-task learning CNN for driver attention monitoring. Journal of Systems Architecture, 148, 103085. doi:10.1016/j.sysarc.2024.103085.

Wang, Z., Yang, X., Lu, H., Shan, C., & Wang, W. (2023). Benchmark of Physiological Model Based and Deep Learning Based Remote Photoplethysmography in Automotive Applications. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece. doi:10.1109/icassp49357.2023.10095078.

Gong, Z., Yang, X., Song, R., Han, X., Ren, C., Shi, H., Niu, J., & Li, W. (2024). Heart Rate Estimation in Driver Monitoring System Using Quality-Guided Spectrum Peak Screening. IEEE Transactions on Instrumentation and Measurement, 73. doi:10.1109/TIM.2024.3352710.

Gharamohammadi, A., Pirani, M., Khajepour, A., & Shaker, G. (2023). Multibin Breathing Pattern Estimation by Radar Fusion for Enhanced Driver Monitoring. IEEE Transactions on Instrumentation and Measurement, 73. doi:10.1109/TIM.2023.3345909.

Siam, A. I., Gamel, S. A., & Talaat, F. M. (2023). Automatic stress detection in car drivers based on non-invasive physiological signals using machine learning techniques. Neural Computing and Applications, 35(17), 12891–12904. doi:10.1007/s00521-023-08428-w.

Zeng, X., Wang, F., Wang, B., Wu, C., Liu, K. J. R., & Au, O. C. (2022). In-Vehicle Sensing for Smart Cars. IEEE Open Journal of Vehicular Technology, 3, 221–242. doi:10.1109/OJVT.2022.3174546.

Choi, Y., Han, S. I., Kong, S. H., & Ko, H. (2016). Driver status monitoring systems for smart vehicles using physiological sensors: A safety enhancement system from automobile manufacturers. IEEE Signal Processing Magazine, 33(6), 22-34. doi:10.1109/MSP.2016.2602095.

Murugan, S., Selvaraj, J., & Sahayadhas, A. (2020). Detection and analysis: driver state with electrocardiogram (ECG). Physical and Engineering Sciences in Medicine, 43(2), 525–537. doi:10.1007/s13246-020-00853-8.

Jung, S. J., Shin, H. S., & Chung, W. Y. (2014). Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intelligent Transport Systems, 8(1), 43–50. doi:10.1049/iet-its.2012.0032.

Meteier, Q., Capallera, M., Ruffieux, S., Angelini, L., Abou Khaled, O., Mugellini, E., Widmer, M., & Sonderegger, A. (2021). Classification of Drivers’ Workload Using Physiological Signals in Conditional Automation. Frontiers in Psychology, 12, 1–18. doi:10.3389/fpsyg.2021.596038.

Arakawa, T. (2021). A review of heartbeat detection systems for automotive applications. Sensors, 21(18), 6112. doi:10.3390/s21186112.

Persson, A., Jonasson, H., Fredriksson, I., Wiklund, U., & Ahlstrom, C. (2021). Heart Rate Variability for Classification of Alert Versus Sleep Deprived Drivers in Real Road Driving Conditions. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3316–3325. doi:10.1109/TITS.2020.2981941.

Mathissen, M., Hennes, N., Faller, F., Leonhardt, S., & Teichmann, D. (2022). Investigation of Three Potential Stress Inducement Tasks During On-Road Driving. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4823–4832. doi:10.1109/TITS.2021.3112811.

Aswathi, C. D., Mathew, N. A., Riyas, K. S., & Jose, R. (2021). Comparison of Machine Learning Algorithms for Heart Rate Variability Based Driver Drowsiness Detection. 2021 2nd Global Conference for Advancement in Technology, GCAT 2021, 1–7. doi:10.1109/GCAT52182.2021.9587733.

Arefnezhad, S., Eichberger, A., Frühwirth, M., Kaufmann, C., Moser, M., & Koglbauer, I. V. (2022). Driver Monitoring of Automated Vehicles by Classification of Driver Drowsiness Using a Deep Convolutional Neural Network Trained by Scalograms of ECG Signals. Energies, 15(2), 480. doi:10.3390/en15020480.

Ebrahimian, S., Nahvi, A., Tashakori, M., Salmanzadeh, H., Mohseni, O., & Leppänen, T. (2022). Multi-Level Classification of Driver Drowsiness by Simultaneous Analysis of ECG and Respiration Signals Using Deep Neural Networks. International Journal of Environmental Research and Public Health, 19(17), 10736. doi:10.3390/ijerph191710736.

Hu, X., & Lodewijks, G. (2020). Detecting fatigue in car drivers and aircraft pilots by using non-invasive measures: The value of differentiation of sleepiness and mental fatigue. Journal of Safety Research, 72(April), 173–187. doi:10.1016/j.jsr.2019.12.015.

Lemkaddem, A., Delgado-Gonzalo, R., Turetken, E., Dasen, S., Moser, V., Gressum, C., Sola, J., Ferrario, D., & Verjus, C. (2018). Multi-modal driver drowsiness detection: A feasibility study. 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, United States. doi:10.1109/bhi.2018.8333357.

Stephenson, A. C., Willis, R., & Alford, C. (2021). Using in-seat electrical potential sensors for non-contact monitoring of heart rate, heart rate variability, and heart rate recovery. International Journal of Psychophysiology, 169, 1–10. doi:10.1016/j.ijpsycho.2021.08.005.

Guettas, A., Ayad, S., & Kazar, O. (2019). Driver state monitoring system: A review. ACM International Conference Proceeding Series, 28, 1-7. doi:10.1145/3372938.3372966.

Warnecke, J. M., Ganapathy, N., Koch, E., Dietzel, A., Flormann, M., Henze, R., & Deserno, T. M. (2022). Printed and Flexible ECG Electrodes Attached to the Steering Wheel for Continuous Health Monitoring during Driving. Sensors, 22(11), 1–12. doi:10.3390/s22114198.

Priya, J., Reshmi, T. S., Gunasekaran, M. (2020). SSW: Smart Steering Wheel for Real-Time Heart Rate Monitoring of Drivers. International Journal of Innovative Technology and Exploring Engineering, 9(4), 3040–3043. doi:10.35940/ijitee.d1896.029420.

Leonhardt, S., Leicht, L., & Teichmann, D. (2018). Unobtrusive vital sign monitoring in automotive environments—A review. Sensors , 18(9), 1–38. doi:10.3390/s18093080.

Hejjel, L. (2004). Suppression of power-line interference by analog notch filtering in the ECG signal for heart rate variability analysis: To do or not to do? Medical Science Monitor, 10(1), 6– 13.

Kim, J. K., & Ahn, J. M. (2019). Digital IIR filters for heart rate variability; a comparison between Butterworth and Elliptic filters. International Journal of Scientific and Technology Research, 8(12), 3509–3513.

Pichot, V., Roche, F., Celle, S., Barthélémy, J. C., & Chouchou, F. (2016). HRV analysis: A free software for analyzing cardiac autonomic activity. Frontiers in Physiology, 7(NOV), 1–15. doi:10.3389/fphys.2016.00557.

Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. PACE - Pacing and Clinical Electrophysiology, 33(11), 1407–1417. doi:10.1111/j.1540-8159.2010.02841.x.

van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2019). HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 368–378. doi:10.1016/j.trf.2019.09.015.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-014


  • There are currently no refbacks.

Copyright (c) 2024 Siti Fatimah Abdul Razak, Sharifah Noor Masidayu Sayed Ismail, Bryan Hii Ben Bin, Sumendra Yogarayan, Azlan Abd. Aziz, Mohd Fikri Azli Abdullah, Noor Hisham Kamis

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.