Eco-friendly 3D Printing Mortar with Low Cement Content: Investigation on Printability and Mechanical Properties

Piti Sukontasukkul, Sila Komkham, Sittisak Jamnam, Hexin Zhang, Kazunori Fujikake, Avirut Puttiwongrak, Chayanon Hansapinyo


The conventional approach to achieving optimal printability and buildability in 3D printing mortar relies heavily on cement, which is both costly and environmentally detrimental due to substantial carbon emissions from its production. This study aims to mitigate these issues by investigating the viability of slag as a partial substitute for cement, with the goal of developing an eco-friendly alternative. The newly formulated mortar, featuring a 30% reduction in cement content (from 830 to 581 kg/m3) and the inclusion of 0.10% micro-fibers, exhibits properties comparable to conventional 3D printing mortar. The research is structured into two parts: Part 1 focuses on determining the optimal fiber content, while Part 2 delves into the investigation of fiber-reinforced mortar with reduced cement content for 3D printing. Criteria were established to ensure mortar flow at 115%, initial printable time below 60 minutes, and 7-day compressive strength exceeding 28 MPa. Part 1 results indicate that a fiber content of 0.1% by volume meets the specified requirements. In Part 2, it was observed that increasing the slag replacement percentage extended the initial printable time and time gap. However, even at a 30% replacement rate, the initial printable time remained within the acceptable range, partially attributed to the presence of fibers in the mix. Additionally, higher slag content led to increased flow and reduced filament height in the mixes. Notably, all formulations surpassed the 7-day compressive strength threshold. These findings underscore the potential of slag as a sustainable alternative to cement in 3D printing fiber-reinforced mortar, offering promising prospects for environmentally friendly construction practices.


Doi: 10.28991/CEJ-2024-010-03-010

Full Text: PDF


3D Printing; Eco-friendly Cement Mortar; Slag; Cement Replacement; Printable Cement Mortar; Sustainability Construction.


Buswell, R. A., Leal de Silva, W. R., Jones, S. Z., & Dirrenberger, J. (2018). 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, 112, 37–49. doi:10.1016/j.cemconres.2018.05.006.

Saruhan, V., Keskinateş, M., & Felekoğlu, B. (2022). A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications. Construction and Building Materials, 337, 127629. doi:10.1016/j.conbuildmat.2022.127629.

Zhang, J., Wang, J., Dong, S., Yu, X., & Han, B. (2019). A review of the current progress and application of 3D printed concrete. Composites Part A: Applied Science and Manufacturing, 125, 105533. doi:10.1016/j.compositesa.2019.105533.

Beersaerts, G., Hertel, T., Lucas, S., & Pontikes, Y. (2023). Promoting the use of Fe-rich slag in construction: Development of a hybrid binder for 3D printing. Cement and Concrete Composites, 138, 104959. doi:10.1016/j.cemconcomp.2023.104959.

Dey, D., Srinivas, D., Panda, B., Suraneni, P., & Sitharam, T. G. (2022). Use of industrial waste materials for 3D printing of sustainable concrete: A review. Journal of Cleaner Production, 340, 130749. doi:10.1016/j.jclepro.2022.130749.

Panda, B., & Tan, M. J. (2019). Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. Materials Letters, 237, 348–351. doi:10.1016/j.matlet.2018.11.131.

Rubio, M., Sonebi, M., & Amziane, S. (2017). 3D printing of fibre cement-based materials: fresh and rheological performances. Academic Journal of Civil Engineering, 35(2), 480-488. doi:10.26168/icbbm2017.74.

Yu, Q., Zhu, B., Li, X., Meng, L., Cai, J., Zhang, Y., & Pan, J. (2023). Investigation of the rheological and mechanical properties of 3D printed eco-friendly concrete with steel slag. Journal of Building Engineering, 72, 106621. doi:10.1016/j.jobe.2023.106621.

Xu, Z., Zhang, D., Li, H., Sun, X., Zhao, K., & Wang, Y. (2022). Effect of FA and GGBFS on compressive strength, rheology, and printing properties of cement-based 3D printing material. Construction and Building Materials, 339, 127685. doi:10.1016/j.conbuildmat.2022.127685.

Dai, S., Zhu, H., Zhai, M., Wu, Q., Yin, Z., Qian, H., & Hua, S. (2021). Stability of steel slag as fine aggregate and its application in 3D printing materials. Construction and Building Materials, 299, 123938. doi:10.1016/j.conbuildmat.2021.123938.

Liu, J., & Lv, C. (2022). Properties of 3D-Printed Polymer Fiber-Reinforced Mortars: A Review. Polymers, 14(7), 1315. doi:10.3390/polym14071315.

Lesovik, V., Fediuk, R., Amran, M., Alaskhanov, A., Volodchenko, A., Murali, G., Uvarov, V., & Elistratkin, M. (2021). 3D-Printed Mortars with Combined Steel and Polypropylene Fibers. Fibers, 9(12), 79. doi:10.3390/fib9120079.

Ungureanu, D., Onuțu, C., Isopescu, D. N., Țăranu, N., Zghibarcea, Ștefan V., Spiridon, I. A., & Polcovnicu, R. A. (2023). A Novel Approach for 3D Printing Fiber-Reinforced Mortars. Materials, 16(13), 4609. doi:10.3390/ma16134609.

Sukontasukkul, P., Maho, B., Komkham, S., Pianfuengfoo, S., Zhang, H. (Johnson), Yoo, D. Y., Tangchirapat, W., Sae-Long, W., Limkatanyu, S., & Chindaprasirt, P. (2023). Precise determination of initial printable time for cement mortar 3D printing using a derivative method. Rapid Prototyping Journal, 29(9), 1888–1903. doi:10.1108/RPJ-03-2023-0087.

Sukontasukkul, P., Panklum, K., Maho, B., Banthia, N., Jongvivatsakul, P., Imjai, T., Sata, V., Limkatanyu, S., & Chindaprasirt, P. (2022). Effect of synthetic microfiber and viscosity modifier agent on layer deformation, viscosity, and open time of cement mortar for 3D printing application. Construction and Building Materials, 319. doi:10.1016/j.conbuildmat.2021.126111.

Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263–1267. doi:10.1016/j.cemconres.2006.01.010.

Guerini, V., Conforti, A., Plizzari, G., & Kawashima, S. (2018). Influence of steel and macro-synthetic fibers on concrete properties. Fibers, 6(3), 47. doi:10.3390/fib6030047.

Dai, P., Lyu, Q., Zong, M., & Zhu, P. (2024). Effect of waste plastic fibers on the printability and mechanical properties of 3D-printed cement mortar. Journal of Building Engineering, 83, 108439. doi:10.1016/j.jobe.2024.108439.

Shakor, P., Nejadi, S., & Paul, G. (2019). A study into the effect of different nozzles shapes and fibre-reinforcement in 3D printed mortar. Materials, 12(10), 1708. doi:10.3390/MA12101708.

Kumar Devalla, T., Srinivas, D., Panda, B., & Sitharam, T. G. (2023). Investigation on the flexural and tensile performance of 3D printable cementitious mixtures considering the effect of fiber distribution. Materials Today: Proceedings, 1-6. doi:10.1016/j.matpr.2023.04.081.

Jamnam, S., Maho, B., Techaphatthanakon, A., Ruttanapun, C., Aemlaor, P., Zhang, H., & Sukontasukkul, P. (2022). Effect of graphene oxide nanoparticles on blast load resistance of steel fiber reinforced concrete. Construction and Building Materials, 343, 128139. doi:10.1016/j.conbuildmat.2022.128139.

Panda, B., Chandra Paul, S., & Jen Tan, M. (2017). Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Materials Letters, 209, 146–149. doi:10.1016/j.matlet.2017.07.123.

Paul, S. C., Tay, Y. W. D., Panda, B., & Tan, M. J. (2018). Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archives of Civil and Mechanical Engineering, 18(1), 311–319. doi:10.1016/j.acme.2017.02.008.

Ding, T., Xiao, J., Zou, S., & Zhou, X. (2020). Anisotropic behavior in bending of 3D printed concrete reinforced with fibers. Composite Structures, 254, 112808. doi:10.1016/j.compstruct.2020.112808.

Ma, G., Zhang, J., Wang, L., Li, Z., & Sun, J. (2018). Mechanical characterization of 3D printed anisotropic cementitious material by the electromechanical transducer. Smart Materials and Structures, 27(7), 75036. doi:10.1088/1361-665X/aac789.

Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115–1120. doi:10.1016/j.resconrec.2008.06.008.

Scrivener, K. L., & Kirkpatrick, R. J. (2008). Innovation in use and research on cementitious material. Cement and Concrete Research, 38(2), 128–136. doi:10.1016/j.cemconres.2007.09.025.

Li, L. G., Xiao, B. F., Cheng, C. M., Xie, H. Z., & Kwan, A. K. H. (2023). Adding Glass Fibers to 3D Printable Mortar: Effects on Printability and Material Anisotropy. Buildings, 13(9), 2295. doi:10.3390/buildings13092295.

Panda, B., & Tan, M. J. (2018). Material properties of 3D printable high-volume slag cement. Proceedings of the First International Conference on 3D Construction Printing (3DcP) in Conjunction with the 6th International Conference on Innovative Production and Construction (IPC 2018), 26-28 November, Melbourne, Australia.

Shakor, P., Nejadi, S., Paul, G., & Gowripalan, N. (2023). Effects of Different Orientation Angle, Size, Surface Roughness, and Heat Curing on Mechanical Behavior of 3D Printed Cement Mortar With/Without Glass Fiber in Powder-Based 3DP. 3D Printing and Additive Manufacturing, 10(2), 330–355. doi:10.1089/3dp.2021.0067.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-010


  • There are currently no refbacks.

Copyright (c) 2024 Piti Sukontasukkul, Sila Komkham, Sittisak Jamnam, Hexin Zhang, Kazunori Fujikake, Avirut Puttiwongrak, Chayanon Hansapinyo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.