Innovative Method for Reinforcing Beams with Different Types of Concrete Using Cross-Rod Steel Bracing Under Pure Torsion

Adnan I. Abdullah, Assim M. Lateef


This study aimed to investigate the effectiveness of an innovative way to reinforce the concrete beams using cross-rod steel bracing under pure torsion. The experimental program consists of casting and testing eighteen concrete beams made of three types of concrete in the form of three groups, with the same dimensions for all beams (200×200×2000) mm. The parameters of the study included concrete types (normal strength, high strength, and steel fiber), as well as the number of internally cross rods (4, 8, 12, 16, 20). The experimental results showed that the number of internally cross-rod reinforcements and concrete type had an effect on ultimate torque, crack width, toughness, and stiffness. The torsional capacity of all concrete beams increased with the increase in internally cross-rod reinforcement. The ultimate torque of normal-strength concrete beams, high-strength concrete beams, and steel fiber concrete beams reinforced with twenty internally cross rods increased (88.34%, 53.20%, and 40.60%), respectively, compared to beams without cross rods in each type of concrete beam. Increasing the internally cross rod in all concrete beams effectively inhibited the development of crack width and improved torsional stiffness, especially in fibrous concrete beams that contained steel fiber. The torsional toughness of all concrete beams increased with the increase of internally cross-rod reinforcement, and it was higher in steel fiber concrete beams. The steel fiber concrete beams reinforced with internally cross-rod steel bracing have better torsional properties compared to ordinary concrete beams and high-strength concrete beams.


Doi: 10.28991/CEJ-2024-010-04-06

Full Text: PDF


Cross-Rod Steel Reinforcement; Normal Strength Concrete Beams; High Strength Concrete Beams; Steel Fiber Concrete Beams; Ultimate Torsional Capacity; Torsional Stiffness; Torsional Toughness.


Lee, H. S., & Hwang, K. R. (2015). Torsion design implications from shake-table responses of an RC low-rise building model having irregularities at the ground story. Earthquake Engineering and Structural Dynamics, 44(6), 907–927. doi:10.1002/eqe.2492.

Mondal, T. G., & Prakash, S. S. (2016). Nonlinear Finite-Element Analysis of RC Bridge Columns under Torsion with and without Axial Compression. Journal of Bridge Engineering, 21(2), 04015037. doi:10.1061/(asce)be.1943-5592.0000798.

Eom, T. S., Kang, S. M., Park, H. G., Choi, T. W., & Jin, J. M. (2014). Cyclic loading test for reinforced concrete columns with continuous rectangular and polygonal hoops. Engineering Structures, 67, 39–49. doi:10.1016/j.engstruct.2014.02.023.

Cao, X., Ren, Y. C., Zhang, L., Jin, L. Z., & Qian, K. (2022). Flexural behavior of ultra-high-performance concrete beams with various types of rebar. Composite Structures, 292, 115674. doi:10.1016/j.compstruct.2022.115674.

Turker, K., & Torun, I. B. (2020). Flexural performance of highly reinforced composite beams with ultra-high performance fiber reinforced concrete layer. Engineering Structures, 219, 110722. doi:10.1016/j.engstruct.2020.110722.

Wang, Q., Song, H. L., Lu, C. L., & Jin, L. Z. (2020). Shear performance of reinforced ultra-high performance concrete rectangular section beams. Structures, 27, 1184–1194. doi:10.1016/j.istruc.2020.07.036.

Cao, X., Ren, Y. C., Qian, K., Fu, F., Deng, X. F., & Zhang, W. J. (2022). Size effect on flexural behavior of ultra-high-performance concrete beams with different reinforcement. Structures, 41, 969–981. doi:10.1016/j.istruc.2022.05.062.

Rahal, K. N. (2013). Torsional strength of normal and high strength reinforced concrete beams. Engineering Structures, 56, 2206–2216. doi:10.1016/j.engstruct.2013.09.005.

Rao, T. D. G., & Seshu, D. R. (2003). Torsion of steel fiber reinforced concrete members. Cement and Concrete Research, 33(11), 1783–1788. doi:10.1016/S0008-8846(03)00174-1.

Okay, F., & Engin, S. (2012). Torsional behavior of steel fiber reinforced concrete beams. Construction and Building Materials, 28(1), 269–275. doi:10.1016/j.conbuildmat.2011.08.062.

Yang, I. H., Joh, C., Lee, J. W., & Kim, B. S. (2013). Torsional behavior of ultra-high performance concrete squared beams. Engineering Structures, 56, 372–383. doi:10.1016/j.engstruct.2013.05.027.

Fehling, E., & Ismail, M. (2012). Experimental investigations on UHPC structural elements subject to pure torsion. Ultra-high Performance Concrete and Nanotechnology in Construction, Kassel University Press, Kassel, Germany.

Karayannis, C. G., & Chalioris, C. E. (2013). Shear tests of reinforced concrete beams with continuous rectangular spiral reinforcement. Construction and Building Materials, 46, 86–97. doi:10.1016/j.conbuildmat.2013.04.023.

De Corte, W., & Boel, V. (2013). Effectiveness of spirally shaped stirrups in reinforced concrete beams. Engineering Structures, 52, 667–675. doi:10.1016/j.engstruct.2013.03.032.

Azimi, M., Campos, U. A., Matthews, J. C., Lu, H., Tehrani, F. M., Sun, S., & Alam, S. (2020). Experimental and Numerical Study of Cyclic Performance of Reinforced Concrete Exterior Connections with Rectangular-Spiral Reinforcement. Journal of Structural Engineering, 146(3), 04019219. doi:10.1061/(asce)st.1943-541x.0002506.

Saha, P., & Meesaraganda, L. V. P. (2019). Experimental investigation of reinforced SCC beam-column joint with rectangular spiral reinforcement under cyclic loading. Construction and Building Materials, 201, 171–185. doi:10.1016/j.conbuildmat.2018.12.192.

Fan, G., Zhao, Z., & Yang, G. (2018). Cyclic Response of Reinforced Concrete Shear Walls with Continuous Rectangular Spiral Stirrups. KSCE Journal of Civil Engineering, 22(5), 1771–1781. doi:10.1007/s12205-017-1134-4.

Ibrahim, A., Askar, H. S., & El-Zoughiby, M. E. (2022). Torsional behavior of solid and hollow concrete beams reinforced with inclined spirals. Journal of King Saud University - Engineering Sciences, 34(5), 309–321. doi:10.1016/j.jksues.2020.10.008.

Shatarat, N., Hunifat, R., Murad, Y., Katkhuda, H., & Abdel Jaber, M. (2020). Torsional capacity investigation of reinforced concrete beams with different configurations of welded and unwelded transverse reinforcement. Structural Concrete, 21(2), 484–500. doi:10.1002/suco.201900054.

Hadhood, A., Gouda, M. G., Agamy, M. H., Mohamed, H. M., & Sherif, A. (2020). Torsion in concrete beams reinforced with GFRP spirals. Engineering Structures, 206, 110174. doi:10.1016/j.engstruct.2020.110174.

Chalioris, C. E., & Karayannis, C. G. (2013). Experimental investigation of RC beams with rectangular spiral reinforcement in torsion. Engineering Structures, 56, 286–297. doi:10.1016/j.engstruct.2013.05.003.

Yalciner, H., Kumbasaroglu, A., & Turan, A. İ. (2019). Torsional behavior of reinforced concrete beams with corroded reinforcement. Structures, 20, 476–488. doi:10.1016/j.istruc.2019.05.013.

Mohamed, H. M., & Benmokrane, B. (2016). Reinforced Concrete Beams with and without FRP Web Reinforcement under Pure Torsion. Journal of Bridge Engineering, 21(3). doi:10.1061/(asce)be.1943-5592.0000839.

Lopes, S. M. R., & Bernardo, L. F. A. (2014). Cracking and failure mode in HSC hollow beams under torsion. Construction and Building Materials, 51, 163–178. doi:10.1016/j.conbuildmat.2013.10.062.

Zhou, J., Li, C., Feng, Z., & Yoo, D.-Y. (2022). Experimental investigation on torsional behaviors of ultra-high-performance fiber-reinforced concrete hollow beams. Cement and Concrete Composites, 129, 104504. doi:10.1016/j.cemconcomp.2022.104504.

Kwahk, I., Joh, C., & Lee, J. W. (2015). Torsional Behavior Design of UHPC Box Beams Based on Thin-Walled Tube Theory. Engineering, 07(03), 101–114. doi:10.4236/eng.2015.73009.

Muhammed, S. H., & Aziz, A. H. (2020). Using Internal Framed Steel Stiffening Ribs as an Alternative Technique for Torsional Strengthening of RC Box Beams. IOP Conference Series: Materials Science and Engineering, 671(1), 12112. doi:10.1088/1757-899X/671/1/012112.

Iraqi Standard No. 5. (1984). Portland Cement. Central Organization for Standardization and Quality Control, Baghdad, Iraq.

Iraqi Standard Specification No.45. (1984). Aggregate form Natural Sources for Concrete and Building Construction. Central Organization for Standardization and Quality Control, Baghdad, Iraq.

Mures, J. K., Chkheiwer, A. H., & Ahmed, Mazin. A. (2021). Experimental Study on Torsional Behavior of steel Fiber Reinforced Concrete Members under Pure Torsion. IOP Conference Series: Materials Science and Engineering, 1090, 012065. doi:10.1088/1757-899x/1090/1/012065.

ASTM A615/A615M-09b. (2022). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-09B.

ACI 318-08. (2008). Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete (ACI), Michigan, United States.

Gao, S. L. (2006). Study on pseudo strain-hardening and fracture characteristic of polyvinyl alcohol fiber reinforced cementitious composites. Dalian University of Technology, Liaoning, China.

Cao, X., Quan, Y., Ren, Y., Fu, F., Jin, Q., He, D., & Zheng, Y. (2023). Experiment study on reactive powder concrete beams using spirals reinforcement under torsion. Engineering Structures, 290, 116361. doi:10.1016/j.engstruct.2023.116361.

Cao, X., Zhang, W. J., Ren, Y. C., Fu, F., Li, Y. hua, He, D. B., & Zheng, Y. (2023). Torsional capacity of ultra-high-performance concrete beams using rectangle stirrup. Journal of Building Engineering, 69, 106231. doi:10.1016/j.jobe.2023.106231.

Elsheikh, A., Albo-Hassan, A. S., & Al-Zayadi, S. K. (2023). Torsion Improvement of Reinforced Self-Compacting Concrete Beams Using Epoxy Injection and CFRP. Civil Engineering Journal, 9(11), 2706-2724. doi:10.28991/CEJ-2023-09-11-05.

Rao, T. D. G., & Rama Seshu, D. (2005). Analytical model for the torsional response of steel fiber reinforced concrete members under pure torsion. Cement and Concrete Composites, 27(4), 493–501. doi:10.1016/j.cemconcomp.2004.03.006.

Hassan, R. F., Jaber, M. H., Al-Salim, N. H., & Hussein, H. H. (2020). Experimental research on torsional strength of synthetic/steel fiber-reinforced hollow concrete beam. Engineering Structures, 220(110948). doi:10.1016/j.engstruct.2020.110948.

Hassan, A. M. T., Jones, S. W., & Mahmud, G. H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of Ultra High Performance Fibre Reinforced Concrete (UHPFRC). Construction and Building Materials, 37, 874–882. doi:10.1016/j.conbuildmat.2012.04.030.

Trung Le, T. (2008). Ultra high performance fibre reinforced concrete paving flags. Ph.D. Thesis, University of Liverpool, Liverpool, United Kingdom.

Behera, G. C., Rao, T. D. G., & Rao, C. B. K. (2016). Torsional behaviour of reinforced concrete beams with ferrocement U-jacketing-Experimental study. Case Studies in Construction Materials, 4, 15–31. doi:10.1016/j.cscm.2015.10.003.

Chalioris, C. E. (2006). Experimental study of the torsion of reinforced concrete members. Structural Engineering and Mechanics, 23(6), 713–737. doi:10.12989/sem.2006.23.6.713.

Deifalla, A., & Ghobarah, A. (2014). Behavior and analysis of inverted T-shaped RC beams under shear and torsion. Engineering Structures, 68, 57–70. doi:10.1016/j.engstruct.2014.02.011.

Zhou, J., Chen, Z., Chen, Y., Song, C., Li, J., & Zhong, M. (2022). Torsional behavior of steel reinforced concrete beam with welded studs: Experimental investigation. Journal of Building Engineering, 48(103879). doi:10.1016/j.jobe.2021.103879.

Abdullah, A. I., & Lateef, A. M. (2023). Novel Torsional Reinforcement of Concrete Beams Utilizing Cross-Rod Steel Reinforcement. Tikrit Journal of Engineering Sciences, 30(3), 49–58. doi:10.25130/tjes.30.3.6.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-06


  • There are currently no refbacks.

Copyright (c) 2024 Adnan Ibrahim Abdullah, Assim M. Lateef

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.