Properties and Microstructure of Treated Coal Bottom Ash as Cement Concrete Replacement

Moad Alosta, Ahmed Mamdouh, Hussein Al Mufargi, Farah N. A. Abd Aziz, Ahmed Rashid, Otman M. M. Elbasir, Husam Al Dughaishi


Sustainable construction is a rapidly growing area of research focused on using industrial waste to replace Portland cement in concrete. This approach not only reduces CO2emissions from cement production but also serves as an effective way to diminish the environmental impact of concrete production. This study aims to investigate the properties of Coal Bottom Ash (CBA) after undergoing two different treatments: flotation and burning. It also evaluates the impact of CBA as a cement replacement in concrete with different replacement percentages (5%, 10%, 15%, and 20%). Chemical analysis of CBA has revealed that it can be classified as a pozzolanic material due to its high content of silicates, aluminates, and iron oxides. The microstructure of CBA showed a porous, angular, and irregular surface with many voids. The findings of this study revealed that the optimum mix was 10% CBA, resulting in a 2% increase in compressive strength compared to the control mix after 56 days of curing. Additionally, the study evaluated the effects of sulfate and chloride on concrete. It was found that the mix with the burning treatment showed an overall increase in strength, while the flotation treatment did not reach the control mix's strength in any of the curing periods. Furthermore, the results demonstrated that CBA has significant potential as a cement replacement material, and the burning treatment showed improvement in concrete's overall properties compared to the raw material in terms of mechanical and chemical properties while reducing greenhouse gas emissions and enhancing the environment.


Doi: 10.28991/CEJ-2024-010-04-08

Full Text: PDF


Industrial Waste; Material Properties; Coal Bottom Ash; Compressive Strength; Microstructure.


El-Bitouri, Y. (2023). Rheological Behavior of Cement Paste: A Phenomenological State of the Art. Eng (Switzerland), 4(3), 1891–1904. doi:10.3390/eng4030107.

Alaneme, G. U., Iro, U. I., Milad, A., Olaiya, B. C., Otu, O. N., Chibuisi, U. P., & Agada, J. (2023). Mechanical Properties Optimization and Simulation of Soil–Saw Dust Ash Blend Using Extreme Vertex Design (EVD) Method. International Journal of Pavement Research and Technology, 1–27. doi:10.1007/s42947-023-00272-4.

Arafa, S., Milad, A., Yusoff, N. I. M., Al-Ansari, N., & Yaseen, Z. M. (2021). Investigation into the permeability and strength of pervious geopolymer concrete containing coated biomass aggregate material. Journal of Materials Research and Technology, 15, 2075–2087. doi:10.1016/j.jmrt.2021.09.045.

Elbasir, O. M. M., Johari, M. A. M., Ahmad, Z. A., Mashaan, N. S., & Milad, A. (2023). The Compressive Strength and Microstructure of Alkali-Activated Mortars Utilizing By-Product-Based Binary-Blended Precursors. Applied Mechanics, 4(3), 885–898. doi:10.3390/applmech4030046.

Dehwah, H. A. F. (2007). Effect of sulfate concentration and associated cation type on concrete deterioration and morphological changes in cement hydrates. Construction and Building Materials, 21(1), 29–39. doi:10.1016/j.conbuildmat.2005.07.010.

Abdul Kadir, A., & Hassan, M. I. H. (2015). Leachability of Self-Compacting Concrete (SCC) Incorporated with Fly Ash and Bottom Ash by Using Synthetic Precipitation Leaching Procedure (SPLP). Applied Mechanics and Materials, 773–774, 1375–1379. doi:10.4028/

Sandhya, B., & Reshma, E. K. (2013). A study on mechanical properties of cement concrete by partial replacement of fine aggregates with bottom ash. International Journal of students research in Technology & Management, 1(4), 416-430.

Qaidi, S., Najm, H. M., Abed, S. M., Ahmed, H. U., Al Dughaishi, H., Al Lawati, J., Sabri, M. M., Alkhatib, F., & Milad, A. (2022). Fly Ash-Based Geopolymer Composites: A Review of the Compressive Strength and Microstructure Analysis. Materials, 15(20), 7098. doi:10.3390/ma15207098.

Kadam, M. P., & Patil, Y. D. (2015). Effect of sieved coal bottom ash as a sand replacement on the properties of cement concrete. Magazine of Concrete Research, 67(5), 227–234. doi:10.1680/macr.14.00179.

Rafieizonooz, M., Salim, M. R., Mirza, J., Hussin, M. W., Salmiati, Khan, R., & Khankhaje, E. (2017). Toxicity characteristics and durability of concrete containing coal ash as substitute for cement and river sand. Construction and Building Materials, 143, 234–246. doi:10.1016/j.conbuildmat.2017.03.151.

An American recycling success story. (2015). Beneficial use of Coal Bottom Combustion Products. American Coal Ash Association (ACAA), Denver, United States.

Dewi, S. J., Ramadhansyah, P. J., Norhidayah, A. H., Md. Maniruzzaman, A. A., Hainin, M. R., & Che Norazman, C. W. (2014). Performance of RHA Blended Cement Concrete under Sodium Chloride via Wetting and Drying. Applied Mechanics and Materials, 554, 106–110. doi:10.4028/

Jamaluddin, N., Hamzah, A. F., Wan Ibrahim, M. H., Jaya, R. P., Arshad, M. F., Zainal Abidin, N. E., & Dahalan, N. H. (2016). Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash. MATEC Web of Conferences, 47, 01010. doi:10.1051/matecconf/20164701010.

Ibe Iro, U., Alaneme, G. U., Milad, A., Olaiya, B. C., Otu, O. N., Isu, E. U., & Amuzie, M. N. (2022). Optimization and Simulation of Saw Dust Ash Concrete Using Extreme Vertex Design Method. Advances in Materials Science and Engineering, 5082139. doi:10.1155/2022/5082139.

Kadir, A. A., Hassan, M. I. H., & Abdullah, M. M. A. B. (2016). Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete. IOP Conference Series: Materials Science and Engineering, 133(1), 012036. doi:10.1088/1757-899X/133/1/012036.

Ewa, D. E., Ukpata, J. O., Otu, O. N., Memon, Z. A., Alaneme, G. U., & Milad, A. (2023). Scheffe’s Simplex Optimization of Flexural Strength of Quarry Dust and Sawdust Ash Pervious Concrete for Sustainable Pavement Construction. Materials, 16(2), 598. doi:10.3390/ma16020598.

Um, N.-I., Ahn, J.-W., Han, G.-C., Lee, S.-J., Kim, H.-S., & Cho, H. (2008). Flotation process in coal bottom ash and their effect on the removal of unburned carbon. Geosystem Engineering, 11(4), 75–80. doi:10.1080/12269328.2008.10541289.

Qaidi, S., Najm, H. M., Abed, S. M., Özkılıç, Y. O., Al Dughaishi, H., Alosta, M., Sabri, M. M. S., Alkhatib, F., & Milad, A. (2022). Concrete Containing Waste Glass as an Environmentally Friendly Aggregate: A Review on Fresh and Mechanical Characteristics. Materials, 15(18), 6222. doi:10.3390/ma15186222.

ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

Meena, A., Singh, N., & Singh, S. P. (2023). High-volume fly ash Self Consolidating Concrete with coal bottom ash and recycled concrete aggregates: Fresh, mechanical and microstructural properties. Journal of Building Engineering, 63, 105447. doi:10.1016/j.jobe.2022.105447.

Singh, G., & ShriRam. (2023). Microstructural and other properties of copper slag–coal bottom ash incorporated concrete using fly ash as cement replacement. Innovative Infrastructure Solutions, 8(2), 78. doi:10.1007/s41062-023-01051-7.

Muthusamy, K., Wong, W. H., Mohamad, N., Rajan, J., Budiea, A. M. A., P.P. Abdul Majeed, A., & Kırgız, M. S. (2023). Properties of concrete containing coal bottom ash as hydraulic binder substitution. In Advance Upcycling of By-products in Binder and Binder-Based Materials: Woodhead Publishing, 243–250. Woodhead Publishing. doi:10.1016/B978-0-323-90791-0.00002-0.

Sorum, M. G., & Kalita, A. (2023). Effect of Bio-Cementation with Rice Husk Ash on Permeability of Silty Sand. Civil Engineering Journal, 9(11), 2854-2867. doi:10.28991/CEJ-2023-09-11-016.

Singh, M., & Siddique, R. (2016). Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. Journal of Cleaner Production, 112, 620–630. doi:10.1016/j.jclepro.2015.08.001.

Rafieizonooz, M., Mirza, J., Salim, M. R., Hussin, M. W., & Khankhaje, E. (2016). Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials, 116, 15-24. doi:10.1016/j.conbuildmat.2016.04.080.

Milad, A., Ali, A. S. B., Babalghaith, A. M., Memon, Z. A., Mashaan, N. S., Arafa, S., & Nur, N. I. (2021). Utilisation of waste-based geopolymer in asphalt pavement modification and construction; a review. Sustainability (Switzerland), 13(6), 3330. doi:10.3390/su13063330.

Mangi, S. A., Wan Ibrahim, M. H., Jamaluddin, N., Arshad, M. F., & Putra Jaya, R. (2019). Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious material. Engineering Science and Technology, an International Journal, 22(2), 515–522. doi:10.1016/j.jestch.2018.09.001.

Benson, C. H., & Bradshaw, S. (2011). User guideline for coal bottom ash and boiler slag in green infrastructure construction. University of Wisconsin, Madison, United States.

Alawi, A., Milad, A., Barbieri, D., Alosta, M., Alaneme, G. U., & Imran Latif, Q. B. alias. (2023). Eco-Friendly Geopolymer Composites Prepared from Agro-Industrial Wastes: A State-of-the-Art Review. CivilEng (Switzerland), 4(2), 433–453. doi:10.3390/civileng4020025.

Singh, N., Shehnazdeep, & Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 117276. doi:10.1016/j.conbuildmat.2019.117276.

Khan, R. A., & Ganesh, A. (2016). The effect of coal bottom ash (CBA) on mechanical and durability characteristics of concrete. Journal of building materials and structures, 3(1), 31-42. doi:10.34118/jbms.v3i1.22.

Ibrahim, A. H., Choong, K. K., Megat Johari, M. A., Md Noor, S. I., Zainal, N. L., & Ariffin, K. S. (2015). Effects of Coal Bottom Ash on the Compressive Strength of Portland Cement Mortar. Applied Mechanics and Materials, 802, 149–154. doi:10.4028/

ASTM C618-19. (2022). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.

ASTM C150 / C150M-19a. (2020). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-19A.

ASTM C33-03. (2010). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033-03.

ASTM C109 / C109M-16. (2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-16.

ASTM C78 / C78M-18. (2021). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078_C0078M-18.

ASTM C293/C293M-16. (2016). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0293_C0293M-16.

ASTM C496 / C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.

ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-08


  • There are currently no refbacks.

Copyright (c) 2024 Husam Aldughaishi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.