Optimizing Alkali-Concentration on Fresh and Durability Properties of Defected Sanitary Ware Porcelain based Geopolymer Concrete

Woratid Wongpattanawut, Borvorn Israngkura Na Ayudhya

Abstract


Introducing defective sanitaryware porcelain as a low-calcium binder for geopolymer mix concrete was regarded as green concrete. Four alkali concentrations (8M, 10M, 12M, and 14M) mixes involving four initial curing temperatures (60°C, 75°C, 90°C, and 105°C) were investigated for porosity, rapid chloride penetration, compressive and abrasive resistance. Tests on geopolymer paste for consistency and initial and final setting times were also assessed. For all the mixes, consistency and setting time decreased with increased alkali concentration levels. An increment in curing temperature increased the setting time rate. Microstructural studies such as X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were carried out, and the results were presented. The compressive and abrasive resistance of the specimen performance increased with an increase in the initial curing temperature and alkali concentration level. Majorly, the mechanical strength of porcelain-based geopolymer specimens increased by increasing the alkali concentration level. Applying 105°C for the initial curing temperature to the specimen, compressive strength, abrasive resistance, and resistibility to chloride ingress of the specimen enhanced. At the 28-days curing period, the ultimate compressive strength was 68.03 N/mm2, the lowest weight loss from abrasive motion was 0.09%, and the lowest passing charge was 1,440.91 coulombs were recorded respectively. As a result, porcelain-based geopolymers required a high initial curing temperature and a high alkali concentration level. It was found that 14M porcelain-based specimens heated at 105°C curing temperature for 24 hours led to an eco-friendly concrete mix with prominent positive results for engineering properties.

 

Doi: 10.28991/CEJ-2024-010-04-05

Full Text: PDF


Keywords


Geopolymers; Rapid Chloride Penetration; Porosity; Porcelain; Abrasive Resistance.

References


The World Bank. (2022). Industry (including construction), value added (% of GDP). The World Bank, Washington, United States. Available online: https://data.worldbank.org/indicator/NV.IND.TOTL.ZS (accessed on March 2024).

Sanjuán, M. Á., Andrade, C., Mora, P., & Zaragoza, A. (2020). Carbon dioxide uptake by cement-based materials: A Spanish case study. Applied Sciences (Switzerland), 10(1), 339. doi:10.3390/app10010339.

Nisbet, M., Van Geem, M. G., Gajda, J., & Marceau, M. L. (1997). Environmental life cycle inventory of Portland cement and concrete. World Cement, 28(4), 3.

Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. doi:10.1016/j.conbuildmat.2019.117455.

Łach, M., Korniejenko, K., & Mikuła, J. (2016). Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams. Procedia Engineering, 151, 410–416. doi:10.1016/j.proeng.2016.07.350.

Duan, P., Yan, C., Zhou, W., & Luo, W. (2015). Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes. Arabian Journal for Science and Engineering, 40(8), 2261–2269. doi:10.1007/s13369-015-1748-0.

Davidovits, J. (1994,). Properties of geopolymer cements. First international conference on alkaline cements and concretes, 11-14 October,1994, Kiev, Ukraine.

Saillio, M., Baroghel-Bouny, V., Pradelle, S., Bertin, M., Vincent, J., & d’Espinose de Lacaillerie, J. B. (2021). Effect of supplementary cementitious materials on carbonation of cement pastes. Cement and Concrete Research, 142, 106358–106375. doi:10.1016/j.cemconres.2021.106358.

Puertas, F., Martínez-Ramírez, S., Alonso, S., & Vázquez, T. (2000). Alkali-activated fly ash/slag cements. Strength behaviour and hydration products. Cement and Concrete Research, 30(10), 1625–1632. doi:10.1016/S0008-8846(00)00298-2.

Pradhan, P., Dwibedy, S., Pradhan, M., Panda, S., & Panigrahi, S. K. (2022). Durability characteristics of geopolymer concrete - Progress and perspectives. Journal of Building Engineering, 59, 105100. doi:10.1016/j.jobe.2022.105100.

Ke, S., Wang, Y., Pan, Z., Ning, C., & Zheng, S. (2016). Recycling of polished tile waste as a main raw material in porcelain tiles. Journal of Cleaner Production, 115, 238–244. doi:10.1016/j.jclepro.2015.12.064.

Wongpattanawut, W., & Ayudhya, B. I. N. (2023). Effect of Curing Temperature on Mechanical Properties of Sanitary Ware Porcelain based Geopolymer Mortar. Civil Engineering Journal, 9(8), 1808–1827. doi:10.28991/cej-2023-09-08-01.

Kubba, Z., Fahim Huseien, G., Sam, A. R. M., Shah, K. W., Asaad, M. A., Ismail, M., Tahir, M. M., & Mirza, J. (2018). Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Studies in Construction Materials, 9, 205. doi:10.1016/j.cscm.2018.e00205.

Mangat, P., & Lambert, P. (2016). Sustainability of alkali-activated cementitious materials and geopolymers. Sustainability of Construction Materials, 459–476. doi:10.1016/b978-0-08-100370-1.00018-4.

Matalkah, F., Xu, L., Wu, W., & Soroushian, P. (2017). Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Materials and Structures/Materiaux et Constructions, 50(1), 1-12. doi:10.1617/s11527-016-0968-4.

Ekaputri, J. J., Lie, H. A., Fujiyama, C., Shovitri, M., Alami, N. H., & Setiamarga, D. H. E. (2019). The effect of alkali concentration on chloride penetration in geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 615(1), 012114. doi:10.1088/1757-899x/615/1/012114.

Nodehi, M., & Taghvaee, V. M. (2022). Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circular Economy and Sustainability, 2(1), 165–196. doi:10.1007/s43615-021-00029-w.

Palomo, A., Fernández-Jiménez, A., Kovalchuk, G., Ordoñez, L. M., & Naranjo, M. C. (2007). Opc-fly ash cementitious systems: Study of gel binders produced during alkaline hydration. Journal of Materials Science, 42(9), 2958–2966. doi:10.1007/s10853-006-0585-7.

Fernandez-Jimenez, A., García-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42(9), 3055–3065. doi:10.1007/s10853-006-0584-8.

Aydin, S., & Baradan, B. (2012). Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Materials and Design, 35, 374–383. doi:10.1016/j.matdes.2011.10.005.

Provis, J. L., & Van Deventer, J. S. J. (2009). Geopolymers: Structures, processing, properties and industrial applications. Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9781845696382.

Aydin, S., & Baradan, B. (2014). Effect of activator type and content on properties of alkali-activated slag mortars. Composites Part B: Engineering, 57, 166–172. doi:10.1016/j.compositesb.2013.10.001.

Amaludin, A. E., Asrah, H., Mohamad, H. M., bin Amaludin, H. Z., & bin Amaludin, N. A. (2023). Physicochemical and microstructural characterization of Klias Peat, Lumadan POFA, and GGBFS for geopolymer based soil stabilization. HighTech and Innovation Journal, 4(2), 327-348. doi:10.28991/HIJ-2023-04-02-07.

Mohd Mortar, N. A., Abdullah, M. M. A. B., Abdul Razak, R., Abd Rahim, S. Z., Aziz, I. H., Nabiałek, M., Jaya, R. P., Semenescu, A., Mohamed, R., & Ghazali, M. F. (2022). Geopolymer Ceramic Application: A Review on Mix Design, Properties and Reinforcement Enhancement. Materials, 15(21), 7567. doi:10.3390/ma15217567.

Meena, R. V., Jain, J. K., Chouhan, H. S., & Beniwal, A. S. (2022). Use of waste ceramics to produce sustainable concrete: A review. Cleaner Materials, 4, 100085. doi:10.1016/j.clema.2022.100085.

Menger, M. H., Ruviaro, A. S., Silvestro, L., Corrêa, T. G., de Matos, P. R., & Pelisser, F. (2023). Utilizing porcelain tile polishing residue in eco-efficient high-strength geopolymers with steel microfibers. Structures, 58, 105630. doi:10.1016/j.istruc.2023.105630.

Yanti, E. D., Mubarok, L., Subari, Erlangga, B. D., Widyaningsih, E., Jakah, Pratiwi, I., Rinovian, A., Nugroho, T., & Herbudiman, B. (2024). Utilization of various ceramic waste as fine aggregate replacement into fly ash-based geopolymer. Materials Letters, 357, 135651. doi:10.1016/j.matlet.2023.135651.

Ricciotti, L., Occhicone, A., Ferone, C., Cioffi, R., & Roviello, G. (2024). Eco-design of geopolymer-based materials recycling porcelain stoneware wastes: a life cycle assessment study. Environment, Development and Sustainability, 26(2), 4055–4074. doi:10.1007/s10668-022-02870-x.

Pitarch, A. M., Reig, L., Tomás, A. E., Forcada, G., Soriano, L., Borrachero, M. V., ... & Monzó, J. M. (2021). Pozzolanic activity of tiles, bricks and ceramic sanitary-ware in eco-friendly Portland blended cements. Journal of Cleaner Production, 279, 123713. doi:10.1016/j.jclepro.2020.123713.

Fortuna, A., Fortuna, D. M., & Martini, E. (2017). An industrial approach to ceramics: sanitaryware. Plinius, 43, 138-145.

Tahwia, A. M., Ellatief, M. A., Bassioni, G., Heniegal, A. M., & Elrahman, M. A. (2023). Influence of high temperature exposure on compressive strength and microstructure of ultra-high performance geopolymer concrete with waste glass and ceramic. Journal of Materials Research and Technology, 23, 5681–5697. doi:10.1016/j.jmrt.2023.02.177.

AL-Oqla, F. M., Faris, H., Habib, M., & Castillo, P. A. (2023). Evolving Genetic Programming Tree Models for Predicting the Mechanical Properties of Green Fibers. Emerging Science Journal, 7(6), 1863-1874. doi:10.28991/ESJ-2023-07-06-02.

Mantovani, V. A., Franco, C. S., Mancini, S. D., Haseagawa, H. L., Gianelli, B. F., Batista, V. X., & Rodrigues, L. L. (2013). Comparison of polymers and ceramics in new and discarded electrical insulators: Reuse and recycling possibilities. Revista Materia, 18(4), 1549–1562. doi:10.1590/S1517-70762013000400015.

Geraldo, R. H., Fernandes, L. F. R., & Camarini, G. (2021). Mechanical properties of porcelain waste alkali-activated mortar. Open Ceramics, 8. doi:10.1016/j.oceram.2021.100184.

Zuda, L., Bayer, P., Rovnaník, P., & Černý, R. (2008). Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cement and Concrete Composites, 30(4), 266–273. doi:10.1016/j.cemconcomp.2007.11.003.

Ramos, G. A., de Matos, P. R., Pelisser, F., & Gleize, P. J. P. (2020). Effect of porcelain tile polishing residue on eco-efficient geopolymer: Rheological performance of pastes and mortars. Journal of Building Engineering, 32, 101699. doi:10.1016/j.jobe.2020.101699.

Chindaprasirt, P., & Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and building materials, 63, 303-310. doi:10.1016/j.conbuildmat.2014.04.010.

Yılmaz, A., Degirmenci, F. N., & Aygörmez, Y. (2023). Effect of initial curing conditions on the durability performance of low-calcium fly ash-based geopolymer mortars. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 398. doi:10.1016/j.bsecv.2023.10.006.

Amigó, J. M., Serrano, F. J., Kojdecki, M. A., Bastida, J., Esteve, V., Reventós, M. M., & Martí, F. (2005). X-ray diffraction microstructure analysis of mullite, quartz and corundum in porcelain insulators. Journal of the European Ceramic Society, 25(9), 1479–1486. doi:10.1016/j.jeurceramsoc.2004.05.019.

Kohout, J., Koutník, P., Hájková, P., Kohoutová, E., Soukup, A., & Vakili, M. (2023). Effect of Aluminosilicates’ Particle Size Distribution on the Microstructural and Mechanical Properties of Metakaolinite-Based Geopolymers. Materials, 16(14), 5008. doi:10.3390/ma16145008.

Kohout, J., Koutník, P., Bezucha, P., & Kwoczynski, Z. (2019). Leachability of the metakaolinite-rich materials in different alkaline solutions. Materials Today Communications, 21, 100669. doi:10.1016/j.mtcomm.2019.100669.

Kovářík, T., Rieger, D., Kadlec, J., Křenek, T., Kullová, L., Pola, M., Bělský, P., Franče, P., & Říha, J. (2017). Thermomechanical properties of particle-reinforced geopolymer composite with various aggregate gradation of fine ceramic filler. Construction and Building Materials, 143, 599–606. doi:10.1016/j.conbuildmat.2017.03.134.

Davis, R. F. (1991). Mullite. Concise Encyclopedia of Advanced Ceramic Materials, 315–317, Pergamon, Oxford, United Kingdom. doi:10.1016/b978-0-08-034720-2.50087-3.

Xu, N., Li, S., Li, Y., Xue, Z., Yuan, L., Zhang, J., & Wang, L. (2015). Preparation and properties of porous ceramic aggregates using electrical insulators waste. Ceramics International, 41(4), 5807–5811. doi:10.1016/j.ceramint.2015.01.009.

Rahman, M. M., Law, D. W., & Patnaikuni, I. (2017). Effect of curing temperature on the properties of 100% clay-based geopolymer concrete. Proceedings of International Structural Engineering and Construction, 4(1), 1–11. doi:10.14455/ISEC.res.2017.98.

STM C117-17. (2023). Standard test method for materials finer than 75 µm (No. 200) Sieve in Mineral Aggregates by Washing. ASTM International, Pennsylvania, United States. doi:10.1520/C0117-17.

ASTM C191-21. (2021). Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International, Pennsylvania, United States. doi:10.1520/C0191-21.

ASTMC143/C143M-12. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0143_C0143M-12.

BS 1881: part 104: 1983. (1983). Testing concrete Part 104. Method for determination of Vebe time. British Standard, London, United Kingdom.

ASTM C944M. (2017). Standard Test Method for Abrasion Resistance of Concrete or Mortar Surfaces by the Rotating-Cutter Method. ASTM International, Pennsylvania, United States. doi:10.1520/C0944-99.

ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.

ASTM C187-16. (2023). Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste. ASTM International, Pennsylvania, United States. doi:10.1520/C187-16.

Sun, Q., Tian, S., Sun, Q., Li, B., Cai, C., Xia, Y., ... & Mu, Q. (2019). Preparation and microstructure of fly ash geopolymer paste backfill material. Journal of Cleaner Production, 225, 376-390. doi:10.1016/j.jclepro.2019.03.310.

Dineshkumar, M., & Umarani, C. (2020). Effect of Alkali Activator on the Standard Consistency and Setting Times of Fly Ash and GGBS-Based Sustainable Geopolymer Pastes. Advances in Civil Engineering, 2020, 10. doi:10.1155/2020/2593207.

Li, Y., Huang, L., Gao, C., Mao, Z., & Qin, M. (2023). Workability and mechanical properties of GGBS-RFBP-FA ternary composite geopolymer concrete with recycled aggregates containing recycled fireclay brick aggregates. Construction and Building Materials, 392, 131450. doi:10.1016/j.conbuildmat.2023.131450.

Rafeet, A., Vinai, R., Soutsos, M., & Sha, W. (2017). Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Construction and Building Materials, 147, 130–142. doi:10.1016/j.conbuildmat.2017.04.036.

Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. doi:10.1016/j.conbuildmat.2014.05.080.

Ranjbar, N., Kashefi, A., & Maheri, M. R. (2018). Hot-pressed geopolymer: Dual effects of heat and curing time. Cement and Concrete Composites, 86, 1–8. doi:10.1016/j.cemconcomp.2017.11.004.

Criado, M., Fernández-Jiménez, A., & Palomo, A. (2007). Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Part I: FTIR study. Microporous and Mesoporous Materials, 106(1–3), 180–191. doi:10.1016/j.micromeso.2007.02.055.

Ukritnukun, S., Koshy, P., Rawal, A., Castel, A., & Sorrell, C. C. (2020). Predictive model of setting times and compressive strengths for low-alkali, ambient-cured, fly ash/slag-based geopolymers. Minerals, 10(10), 920. doi:10.3390/min10100920.

Kohout, J., Koutník, P., Bezucha, P., & Kwoczynski, Z. (2019). Leachability of the metakaolinite-rich materials in different alkaline solutions. Materials Today Communications, 21. doi:10.1016/j.mtcomm.2019.100669.

Ramli, M. I. I., Salleh, M. A. A. M., Abdullah, M. M. A. B., Aziz, I. H., Ying, T. C., Shahedan, N. F., Kockelmann, W., Fedrigo, A., Sandu, A. V., Vizureanu, P., Chaiprapa, J., & Nergis, D. D. B. (2022). The Influence of Sintering Temperature on the Pore Structure of an Alkali-Activated Kaolin-Based Geopolymer Ceramic. Materials, 15(7), 2667. doi:10.3390/ma15072667.

Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176–1183. doi:10.1016/j.conbuildmat.2009.12.023.

El-Hassan, H., & Elkholy, S. (2021). Enhancing the performance of Alkali-Activated Slag-Fly ash blended concrete through hybrid steel fiber reinforcement. Construction and Building Materials, 311, 125313. doi:10.1016/j.conbuildmat.2021.125313

Nath, S. K., Maitra, S., Mukherjee, S., & Kumar, S. (2016). Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765. doi:10.1016/j.conbuildmat.2016.02.106.

Zhao, F. Q., Ni, W., Wang, H. J., & Liu, H. J. (2007). Activated fly ash/slag blended cement. Resources, Conservation and recycling, 52(2), 303-313. doi:10.1016/j.resconrec.2007.04.002.

Kewalramani, M., & Khartabil, A. (2021). Porosity evaluation of concrete containing supplementary cementitious materials for durability assessment through volume of permeable voids and water immersion conditions. Buildings, 11(9), 378. doi:10.3390/buildings11090378.

Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V., & Petrović, R. (2015). Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends. Ceramics International, 41(1), 1421–1435. doi:10.1016/j.ceramint.2014.09.075.

Kotwal, A. R., Kim, Y. J., Hu, J., & Sriraman, V. (2015). Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash. International Journal of Concrete Structures and Materials, 9(1), 35–43. doi:10.1007/s40069-014-0085-0.

Samantasinghar, S., & Singh, S. P. (2019). Fresh and Hardened Properties of Fly Ash–Slag Blended Geopolymer Paste and Mortar. International Journal of Concrete Structures and Materials, 13(1), 1–12. doi:10.1186/s40069-019-0360-1.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485.

Fernández-Jiménez, A. M., Palomo, A., & López-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103(2), 106–112. doi:10.14359/15261.

Hamidi, R. M., Man, Z., & Azizli, K. A. (2016). Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer. Procedia Engineering, 148, 189–193. doi:10.1016/j.proeng.2016.06.568.

Zhang, N., Hedayat, A., Figueroa, L., Steirer, K. X., Li, L., & Bolaños Sosa, H. G. (2023). Physical, mechanical, cracking, and damage properties of mine tailings-based geopolymer: Experimental and numerical investigations. Journal of Building Engineering, 75, 107075. doi:10.1016/j.jobe.2023.107075.

Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073–1078. doi:10.1016/j.mineng.2009.03.022.

Singh, B., Rahman, M. R., Paswan, R., & Bhattacharyya, S. K. (2016). Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Construction and Building Materials, 118, 171–179. doi:10.1016/j.conbuildmat.2016.05.008.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & Van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. doi:10.1007/s10853-006-0637-z.

Krivenko, P. V., & Kovalchuk, G. Y. (2007). Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix. Journal of Materials Science, 42(9), 2944–2952. doi:10.1007/s10853-006-0528-3.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Borvorn Israngkura Na Ayudhya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message