Mechanical and Microstructural Properties of Geopolymer Concrete Containing Fly Ash and Sugarcane Bagasse Ash

Mohammed Ali M. Rihan, Richard O. Onchiri, Naftary Gathimba, Bernadette Sabuni


Portland cement plays a vital role in construction and building projects. However, its manufacturing process releases detrimental pollutants and contributes to climate change. The environmental concerns linked to the manufacturing of conventional Portland cement, such as its high energy demands, raw material consumption, and significant CO2 emissions, have prompted the need to look for alternatives such as geopolymer or green concrete. In addition, indiscriminate disposal of waste might have a detrimental effect on the environment. This paper investigates the mechanical and microstructural properties of geopolymer concrete incorporating fly ash and sugarcane bagasse ash as primary constituents. Sugarcane bagasse ash (SCBA) was employed as a partial substitute for Fly Ash (FA), with varying proportions ranging from 5% to 20% with increments of 5%. Alkaline activators utilized were NaOH (14M) and Na2SiO3, with a ratio of 1.5. Various tests, including the slump test, compressive strength test, splitting tensile strength test, and flexural strength test, were performed. The microstructural characteristics were assessed by scanning electron microscopy (SEM), energy dispersive analysis (EDS), and X-ray diffraction analysis (XRD). The results revealed that adding sugarcane bagasse ash influenced the workability of geopolymer concrete while enhancing its mechanical properties. The research findings have shown that the mixture comprising 5% SCBA has the greatest compressive strength of 64 MPa.


Doi: 10.28991/CEJ-2024-010-04-018

Full Text: PDF


Geopolymerization; Sugarcane Bagasse Ash; Fly Ash; Microstructure; Alkaline Activator; Building Projects.


Gupta, A., Gupta, N., & Saxena, K. K. (2021). Mechanical and durability characteristics assessment of geopolymer composite (Gpc) at varying silica fume content. Journal of Composites Science, 5(9), 237. doi:10.3390/JCS5090237.

Farrant, W. E., Babafemi, A. J., Kolawole, J. T., & Panda, B. (2022). Influence of Sugarcane Bagasse Ash and Silica Fume on the Mechanical and Durability Properties of Concrete. Materials, 15(9), 3018. doi:10.3390/ma15093018.

H.M., T., & Unnikrishnan, S. (2022). Utilization of industrial and agricultural waste materials for the development of geopolymer concrete- A review. Materials Today: Proceedings, 65, 1290–1297. doi:10.1016/j.matpr.2022.04.192.

Tanu, H. M., & Unnikrishnan, S. (2023). Review on Durability of Geopolymer Concrete Developed with Industrial and Agricultural Byproducts. Materials Today: Proceedings, 1-7. doi:10.1016/j.matpr.2023.03.335.

Alahmari, T. S., Abdalla, T. A., & Rihan, M. A. M. (2023). Review of Recent Developments Regarding the Durability Performance of Eco-Friendly Geopolymer Concrete. Buildings, 13(12). doi:10.3390/buildings13123033.

Bellum, R. R., Venkatesh, C., & Madduru, S. R. C. (2021). Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innovative Infrastructure Solutions, 6(4), 215. doi:10.1007/s41062-021-00578-x.

Zareei, S. A., Ameri, F., & Bahrami, N. (2018). Microstructure, strength, and durability of eco-friendly concretes containing sugarcane bagasse ash. Construction and Building Materials, 184, 258–268. doi:10.1016/j.conbuildmat.2018.06.153.

Shilar, F. A., Ganachari, S. V., Patil, V. B., Khan, T. M. Y., & Dawood Abdul Khadar, S. (2022). Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review. Case Studies in Construction Materials, 16, 1014. doi:10.1016/j.cscm.2022.e01014.

Garcia-Lodeiro, I., Palomo, A., & Fernández-Jiménez, A. (2015). An overview of the chemistry of alkali-activated cement-based binders. Handbook of Alkali-Activated Cements, Mortars and Concretes, 19–47, Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9781782422884.1.19.

Mendes, B., Andrade, I. K., de Carvalho, J. M., Pedroti, L., & de Oliveira Júnior, A. (2021). Assessment of mechanical and microstructural properties of geopolymers produced from metakaolin, silica fume, and red mud. International Journal of Applied Ceramic Technology, 18(1), 262–274. doi:10.1111/ijac.13635.

Moradikhou, A. B., Safehian, M., & Golafshani, E. M. (2023). High-strength geopolymer concrete based on coal washing waste. Construction and Building Materials, 362, 129675. doi:10.1016/j.conbuildmat.2022.129675.

Ekinci, E., Türkmen, İ., Kantarci, F., & Karakoç, M. B. (2019). The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials, 201, 257–267. doi:10.1016/j.conbuildmat.2018.12.204.

Aliabdo, A. A., Abd Elmoaty, A. E. M., & Salem, H. A. (2016). Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Construction and Building Materials, 121, 694–703. doi:10.1016/j.conbuildmat.2016.06.062.

Ng, C., Alengaram, U. J., Wong, L. S., Mo, K. H., Jumaat, M. Z., & Ramesh, S. (2018). A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Construction and Building Materials, 186, 550–576. doi:10.1016/j.conbuildmat.2018.07.075.

Salas, D. A., Ramirez, A. D., Ulloa, N., Baykara, H., & Boero, A. J. (2018). Life cycle assessment of geopolymer concrete. Construction and Building Materials, 190, 170–177. doi:10.1016/j.conbuildmat.2018.09.123.

Karakoç, M. B., Türkmen, I., Maraş, M. M., Kantarci, F., Demirboʇa, R., & Uʇur Toprak, M. (2014). Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Construction and Building Materials, 72, 283–292. doi:10.1016/j.conbuildmat.2014.09.021.

Karthik, A., Sudalaimani, K., & Vijaya Kumar, C. T. (2017). Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self-curing bio-geopolymer concrete. Construction and Building Materials, 149, 338–349. doi:10.1016/j.conbuildmat.2017.05.139.

Yaseri, S., Hajiaghaei, G., Mohammadi, F., Mahdikhani, M., & Farokhzad, R. (2017). The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Construction and Building Materials, 157, 534–545. doi:10.1016/j.conbuildmat.2017.09.102.

Sakkas, K., Panias, D., Nomikos, P. P., & Sofianos, A. I. (2014). Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling and Underground Space Technology, 43, 148–156. doi:10.1016/j.tust.2014.05.003.

Sarker, P. K., Kelly, S., & Yao, Z. (2014). Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Materials and Design, 63, 584–592. doi:10.1016/j.matdes.2014.06.059.

Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produce by granulated blast furnace slag. Minerals Engineering, 16(3), 205–210. doi:10.1016/S0892-6875(03)00008-6.

Ganesan, N., Abraham, R., & Deepa Raj, S. (2015). Durability characteristics of steel fibre reinforced geopolymer concrete. Construction and Building Materials, 93, 471–476. doi:10.1016/j.conbuildmat.2015.06.014.

Lee, W. K. W., & Van Deventer, J. S. J. (2002). The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(2–3), 115–126. doi:10.1016/S0927-7757(02)00239-X.

Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. doi:10.1016/j.conbuildmat.2013.06.017.

Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261–1277. doi:10.1016/j.mineng.2007.07.011.

Bellum, R. R., Muniraj, K., & Madduru, S. R. C. (2020). Influence of activator solution on microstructural and mechanical properties of geopolymer concrete. Materialia, 10, 100659. doi:10.1016/j.mtla.2020.100659.

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101(6), 467–472. doi:10.14359/13485.

Yip, C. K., Lukey, G. C., Provis, J. L., & van Deventer, J. S. J. (2008). Effect of calcium silicate sources on geopolymerisation. Cement and Concrete Research, 38(4), 554–564. doi:10.1016/j.cemconres.2007.11.001.

Amin, M., Elsakhawy, Y., Abu el-hassan, K., & Abdelsalam, B. A. (2022). Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Studies in Construction Materials, 16. doi:10.1016/j.cscm.2022.e00976.

Zaid, O., Abdulwahid Hamah Sor, N., Martínez-García, R., de Prado-Gil, J., Mohamed Elhadi, K., & Yosri, A. M. (2024). Sustainability evaluation, engineering properties and challenges relevant to geopolymer concrete modified with different nanomaterials: A systematic review. Ain Shams Engineering Journal, 15(2), 102373. doi:10.1016/j.asej.2023.102373.

Tian, Z., Tang, X., Xiu, Z., Zhou, H., & Xue, Z. (2022). The mechanical properties improvement of environmentally friendly fly ash-based geopolymer mortar using bio-mineralization. Journal of Cleaner Production, 332, 130020. doi:10.1016/j.jclepro.2021.130020.

Bezabih, T., Kanali, C., & Thuo, J. (2023). Effects of teff straw ash on the mechanical and microstructural properties of ambient cured fly ash-based geopolymer mortar for onsite applications. Results in Engineering, 18, 101123. doi:10.1016/j.rineng.2023.101123.

Suraneni, P., Burris, L., Shearer, C. R., & Hooton, R. D. (2021). ASTM C618 fly ash specification: Comparison with other specifications, shortcomings, and solutions. ACI Materials Journal, 118(1), 157–167. doi:10.14359/51725994.

Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. doi:10.1016/j.jclepro.2016.03.019.

Kaya, M., Uysal, M., Yilmaz, K., Karahan, O., & Atis, C. D. (2020). Mechanical properties of class C and F fly ash geopolymer mortars. Gradjevinar, 72(4), 297–309. doi:10.14256/JCE.2421.2018.

Wattimena, O. K., Antoni, & Hardjito, D. (2017). A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer. AIP Conference Proceedings, 1887, 020041. doi:10.1063/1.5003524.

El-said, A., Awad, A., Ahmad, M., Sabri, M. M. S., Deifalla, A. F., & Tawfik, M. (2022). The Mechanical Behavior of Sustainable Concrete Using Raw and Processed Sugarcane Bagasse Ash. Sustainability (Switzerland), 14(18), 11181. doi:10.3390/su141811181.

Torres de Sande, V., Sadique, M., Pineda, P., Bras, A., Atherton, W., & Riley, M. (2021). Potential use of sugar cane bagasse ash as sand replacement for durable concrete. Journal of Building Engineering, 39, 102277. doi:10.1016/j.jobe.2021.102277.

Ganesan, K., Rajagopal, K., & Thangavel, K. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites, 29(6), 515–524. doi:10.1016/j.cemconcomp.2007.03.001.

Murugesan, T., Vidjeapriya, R., & Bahurudeen, A. (2020). Sugarcane Bagasse Ash-Blended Concrete for Effective Resource Utilization Between Sugar and Construction Industries. Sugar Tech, 22(5), 858–869. doi:10.1007/s12355-020-00794-2.

Memon, S. A., Javed, U., Shah, M. I., & Hanif, A. (2022). Use of Processed Sugarcane Bagasse Ash in Concrete as Partial Replacement of Cement: Mechanical and Durability Properties. Buildings, 12(10), 1769. doi:10.3390/buildings12101769.

Loganayagan, S., Mohan, N. C., & Dhivyabharathi, S. (2021). Sugarcane bagasse ash as alternate supplementary cementitious material in concrete. Materials Today: Proceedings, 45, 1004–1007. doi:10.1016/j.matpr.2020.03.060.

Jagadesh, P., Ramachandramurthy, A., & Murugesan, R. (2018). Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Construction and Building Materials, 176, 608–617. doi:10.1016/j.conbuildmat.2018.05.037.

Dineshkumar, R., & Balamurugan, P. (2021). Behavior of high-strength concrete with sugarcane bagasse ash as replacement for cement. Innovative Infrastructure Solutions, 6(2). doi:10.1007/s41062-020-00450-4.

Jha, P., Sachan, A. K., & Singh, R. P. (2021). Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Materials Today: Proceedings, 44, 419–427. doi:10.1016/j.matpr.2020.09.751.

Chindaprasirt, P., Sujumnongtokul, P., & Posi, P. (2019). Durability and mechanical properties of pavement concrete containing bagasse ash. Materials Today: Proceedings, 17, 1612–1626. doi:10.1016/j.matpr.2019.06.191.

Sua-Iam, G., & Makul, N. (2013). Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. Journal of Cleaner Production, 57, 308–319. doi:10.1016/j.jclepro.2013.06.009.

Wuttisombatjaroen, J., Hemnithi, N., & Chaturabong, P. (2023). Investigating the influence of rigden void of fillers on the moisture damage of asphalt mixtures. Civil Engineering Journal, 9(12), 3161-3173. doi:10.28991/CEJ-2023-09-12-014.

Atia, S. M., & Abbas, W. A. (2022). Effect of adding nano starch biopolymer on some properties of silica fume concrete. Key Engineering Materials, 911, 145-150. doi:10.4028/p-2i42va.

Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., Joyklad, P., & Zajdel, P. (2021). Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review. Case Studies in Construction Materials, 15, 698. doi:10.1016/j.cscm.2021.e00698.

Kathirvel, P., Gunasekaran, M., Sreekumaran, S., & Krishna, A. (2020). Effect of partial replacement of ground granulated blast furnace slag with sugarcane bagasse ash as source material in the production of geopolymer concrete. Medziagotyra, 26(4), 477–481. doi:10.5755/

Azad, N. M., & Samarakoon, S. M. S. M. K. (2021). Utilization of industrial by-products/waste to manufacture geopolymer cement/concrete. Sustainability (Switzerland), 13(2), 1–22. doi:10.3390/su13020873.

Singh, K. (2020). Experimental study on metakolin and baggashe ash based geopolymer concrete. Materials Today: Proceedings, 37(Part 2), 3289–3295. doi:10.1016/j.matpr.2020.09.116.

H.M., T., & Unnikrishnan, S. (2023). Mechanical Strength and Microstructure of GGBS-SCBA based Geopolymer Concrete. Journal of Materials Research and Technology, 24, 7816–7831. doi:10.1016/j.jmrt.2023.05.051.

Vanathi, V., Nagarajan, V., & Jagadesh, P. (2023). Influence of sugarcane bagasse ash on mechanical properties of geopolymer concrete. Journal of Building Engineering, 79, 107836. doi:10.1016/j.jobe.2023.107836.

Alghannam, M., Albidah, A., Abbas, H., & Al-Salloum, Y. (2021). Influence of Critical Parameters of Mix Proportions on Properties of MK-Based Geopolymer Concrete. Arabian Journal for Science and Engineering, 46(5), 4399–4408. doi:10.1007/s13369-020-04970-0.

Sarkar, M., & Dana, K. (2021). Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceramics International, 47(3), 3473–3483. doi:10.1016/j.ceramint.2020.09.191.

Upadhyay, D., Chanda, A., & Thakkar, S. (2023). Mixture Design of High-Strength Geopolymer Concrete. Materials Today: Proceedings, 93, 335–339. doi:10.1016/j.matpr.2023.07.265.

Shoaei, P., Musaeei, H. R., Mirlohi, F., Narimani zamanabadi, S., Ameri, F., & Bahrami, N. (2019). Waste ceramic powder-based geopolymer mortars: Effect of curing temperature and alkaline solution-to-binder ratio. Construction and Building Materials, 227, 116686. doi:10.1016/j.conbuildmat.2019.116686.

Nematollahi, B., & Sanjayan, J. (2014). Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Materials and Design, 57, 667–672. doi:10.1016/j.matdes.2014.01.064.

Hanjitsuwan, S., Hunpratub, S., Thongbai, P., Maensiri, S., Sata, V., & Chindaprasirt, P. (2014). Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cement and Concrete Composites, 45, 9–14. doi:10.1016/j.cemconcomp.2013.09.012.

Rukzon, S., & Chindaprasirt, P. (2012). Utilization of bagasse ash in high-strength concrete. Materials and Design, 34, 45–50. doi:10.1016/j.matdes.2011.07.045.

Andrade Neto, J. da S., de França, M. J. S., Amorim Júnior, N. S. de, & Ribeiro, D. V. (2021). Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Construction and Building Materials, 266, 120959. doi:10.1016/j.conbuildmat.2020.120959.

Abdalla, T. A., Koteng, D. O., Shitote, S. M., & Matallah, M. (2022). Mechanical and durability properties of concrete incorporating silica fume and a high volume of sugarcane bagasse ash. Results in Engineering, 16, 100666. doi:10.1016/j.rineng.2022.100666.

Yadav, A. L., Sairam, V., Muruganandam, L., & Srinivasan, K. (2020). An overview of the influences of mechanical and chemical processing on sugarcane bagasse ash characterisation as a supplementary cementitious material. Journal of Cleaner Production, 245. doi:10.1016/j.jclepro.2019.118854.

Chusilp, N., Jaturapitakkul, C., & Kiattikomol, K. (2009). Utilization of bagasse ash as a pozzolanic material in concrete. Construction and Building Materials, 23(11), 3352–3358. doi:10.1016/j.conbuildmat.2009.06.030.

Jha, P., Sachan, A.K., & Singh, R.P. (2021). Bagasse Ash (ScBa) and Its Utilization in Concrete as Pozzolanic Material: A Review. Advances in Geotechnics and Structural Engineering. Lecture Notes in Civil Engineering, 143. Springer, Singapore. doi:10.1007/978-981-33-6969-6_41.

Srinivas, D., Suresh, D., & Lakshmi, N. H. (2021). Experimental Investigation on Bagasse ash Based Geopolymer Concrete Subjected to Elevated Temperature. IOP Conference Series: Earth and Environmental Science, 796(1). doi:10.1088/1755-1315/796/1/012028.

Landa-Ruiz, L., Landa-Gómez, A., Mendoza-Rangel, J. M., Landa-Sánchez, A., Ariza-Figueroa, H., Méndez-Ramírez, C. T., Santiago-Hurtado, G., Moreno-Landeros, V. M., Croche, R., & Baltazar-Zamora, M. A. (2021). Physical, mechanical and durability properties of ecofriendly ternary concrete made with sugar cane bagasse ash and silica fume. Crystals, 11(9). doi:10.3390/cryst11091012.

Marvila, M. T., de Azevedo, A. R. G., de Matos, P. R., Monteiro, S. N., & Vieira, C. M. F. (2021). Rheological and the fresh state properties of alkali-activated mortars by blast furnace slag. Materials, 14(8). doi:10.3390/ma14082069.

Shafiq, N., Hussein, A. A. E., Nuruddin, M. F., & Al Mattarneh, H. (2018). Effects of sugarcane bagasse ash on the properties of concrete. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 171(3), 123–132. doi:10.1680/jensu.15.00014.

Moradikhou, A. B., Bahador Moradikhou, A., & Safehian, M. (n.d.). Comparison of Mechanical Strengths and Resistance to Acidic Conditions, Permeability and Resistance to Elevated Temperatures of Geopolymer Concrete and Conventional Concrete. Advance Researches in Civil Engineering, 3(2), 27–37. doi:10.30469/ARCE.2021.135124.

Silva, P. De, Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512–518. doi:10.1016/j.cemconres.2007.01.003.

Ranjbar, N., Mehrali, M., Behnia, A., Alengaram, U. J., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Materials & Design, 59, 532–539. doi:10.1016/j.matdes.2014.03.037.

Davidovits, J. (2017). Geopolymers: Ceramic-like inorganic polymers. Journal of Ceramic Science and Technology, 8(3), 335–350. doi:10.4416/JCST2017-00038.

Saloni, Parveen, Yan Lim, Y., & Pham, T. M. (2021). Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: Strength and permeability properties. Construction and Building Materials, 300, 124321. doi:10.1016/j.conbuildmat.2021.124321.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-018


  • There are currently no refbacks.

Copyright (c) 2024 Mohammed Ali. M Rihan, Richard Ocharo Onchiri, Naftary Gathimba, Bernadette Sabuni

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.