Seismic Resilience of Steel-Braced Frames Incorporating Steel Slit Dampers: A Review and Comparative Numerical Analysis

Zaid A. Al-Sadoon, M. Almohammad-albakkar


Steel dampers, specifically steel slit dampers (SSDs), are crucial for enhancing the seismic resilience of buildings by absorbing energy and mitigating damage. SSDs are celebrated for their ability to produce stable hysteretic behavior, owing to the inelastic deformation of their strips, alongside benefits such as lightness, ease of manufacture, and straightforward post-earthquake replacement. This research extensively examines SSD applications, design principles, and innovations in their modeling, optimization, and production processes. The literature highlights SSDs' consistent performance in resisting both compression and tension, their adaptability in strength, ductility, and energy dissipation through modifications in strip configurations and the superiority of non-prismatic and hourglass-shaped designs over traditional options. Numerical analyses have been conducted to assess the effectiveness of non-prismatic slit dampers in comparison to their prismatic counterparts within braced frames. Three distinct braced frame configurations have been analyzed: one with a diagonal brace without a damper, another featuring a uniform prismatic slit damper, and a third incorporating a non-prismatic slit damper with an hourglass shape. The analysis primarily compared these systems' hysteresis behavior, ductility, and energy dissipation capacities. Results indicate a significant enhancement in performance when utilizing non-prismatic slit dampers. Notably, these dampers exhibited a remarkable 69% increase in cumulative energy dissipation compared to prismatic ones. Furthermore, the study reveals that a steel slit damper-braced frame, when equipped with optimally designed slit geometries, can tolerate inter-story drifts in excess of 2% while simultaneously achieving a greater than 12% increase in energy dissipation efficiency.


Doi: 10.28991/CEJ-2024-010-04-019

Full Text: PDF


Steel Slit Damper; Braced Frames; Hysteresis Curves; Ductility; Energy Dissipation.


Meshkat Rouhani, V. R., Zamani Ahar, G., & Saeed Monir, H. (2022). Experimental and numerical study on a new double-walled tuned liquid damper. International Journal of Engineering, 35(1), 29–44. doi:10.5829/IJE.2022.35.01A.04.

Jaisee, S., Yue, F., & Ooi, Y. H. (2021). A state-of-the-art review on passive friction dampers and their applications. Engineering Structures, 235, 112022. doi:10.1016/j.engstruct.2021.112022.

Rousta, A. M., Gorji Azandariani, M., Safaei Ardakani, M. A., & Shoja, S. (2022). Cyclic behavior of an energy dissipation system with the vertical steel panel flexural-yielding dampers. Structures, 45, 629–644. doi:10.1016/j.istruc.2022.09.047.

Javidan, M.M., & Kim, J. (2020). Steel hysteretic column dampers for seismic retrofit of soft-first-story structures. Steel and Composite Structures, (37)3, 259-272. doi:10.12989/scs.2020.37.3.259.

Zahrai, S. M., & Froozanfar, M. (2019). Improving Seismic Behavior of MRFs by U-shaped Hysteretic Damper Along Diagonal Brace. International Journal of Steel Structures, 19(2), 543–558. doi:10.1007/s13296-018-0139-2.

Javanmardi, A., Ghaedi, K., Ibrahim, Z., Huang, F., & Xu, P. (2020). Development of a new hexagonal honeycomb steel damper. Archives of Civil and Mechanical Engineering, 20(2), 1–19. doi:10.1007/s43452-020-00063-9.

Sahoo, D. R., Singhal, T., Taraithia, S. S., & Saini, A. (2015). Cyclic behavior of shear-and-flexural yielding metallic dampers. Journal of Constructional Steel Research, 114, 247–257. doi:10.1016/j.jcsr.2015.08.006.

Najari Varzaneh, M., & Hosseini, M. (2019). Cyclic Performance and Mechanical Characteristics of the Oval-shaped Damper. KSCE Journal of Civil Engineering, 23(11), 4747–4757. doi:10.1007/s12205-019-1382-6.

Mousavi, H., Sabbagh-Yazdi, S.-R. & Almohammad-albakkar, M., (2021). New mathematical formula for design viscous dampers in Internal and external Scissor-Jack braces, 6th International Conference on Interdisciplinary Researches in Civil Engineering, Architecture and Urban Management in 21st Century; 17 August, 2021, Tehran, Iran.

Zahrai, S. M., & Cheraghi, A. (2017). Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe. Structural Engineering and Mechanics, 64(2), 195–204. doi:10.12989/sem.2017.64.2.195.

Kassem, M. M., Mohamed Nazri, F., & Noroozinejad Farsangi, E. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal, 11(4), 849–864. doi:10.1016/j.asej.2020.04.001.

Ghaedi, K. (2017). Earthquake Prediction. Earthquakes - Tectonics, Hazard and Risk Mitigation, IntechOpen, London, United Kingdom. doi:10.5772/65511.

Javanmardi, A., Ibrahim, Z., Ghaedi, K., Benisi Ghadim, H., & Hanif, M. U. (2019). State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation. Archives of Computational Methods in Engineering, 27(2), 455–478. doi:10.1007/s11831-019-09329-9.

Boardman, P. R., Wood, B. J., & Carr, A. J. (1983). Union House - a Cross Braced Structure With Energy Dissipators. Bulletin of the New Zealand National Society for Earthquake Engineering, 16(2), 83–97.

Martinez-Romero, E. (1993). Experiences on the use of supplementary energy dissipators on building structures. Earthquake Spectra, 9(3), 581–625. doi:10.1193/1.1585731.

Perry, C. L., Fierro, E. A., Sedarat, H., & Scholl, R. E. (1993). Seismic upgrade in San Francisco using energy dissipation devices. Earthquake Spectra, 9(3), 559–579. doi:10.1193/1.1585730.

Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S. F., Skelton, R. E., Soong, T. T., Spencer, B. F., & Yao, J. T. P. (1997). Structural Control: Past, Present, and Future. Journal of Engineering Mechanics, 123(9), 897–971. doi:10.1061/(asce)0733-9399(1997)123:9(897).

Soong, T. T., & Spencer, B. F. (2002). Supplemental energy dissipation: State-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243–259. doi:10.1016/S0141-0296(01)00092-X.

Symans, M. D., Charney, F. A., Whittaker, A. S., Constantinou, M. C., Kircher, C. A., Johnson, M. W., & McNamara, R. J. (2008). Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments. Journal of Structural Engineering, 134(1), 3–21. doi:10.1061/(asce)0733-9445(2008)134:1(3).

Saaed, T. E., Nikolakopoulos, G., Jonasson, J. E., & Hedlund, H. (2015). A state-of-the-art review of structural control systems. JVC/Journal of Vibration and Control, 21(5), 919–937. doi:10.1177/1077546313478294.

Li, H., & Huo, L. (2010). Advances in Structural Control in Civil Engineering in China. Mathematical Problems in Engineering, 2010, 1–23. doi:10.1155/2010/936081.

Ghaedi, K., Ibrahim, Z., Adeli, H., & Javanmardi, A. (2017). Invited review: Recent developments in vibration control of building and bridge structures. Journal of Vibroengineering, 19(5), 3564–3580. doi:10.21595/jve.2017.18900.

Korkmaz, S. (2011). A review of active structural control: Challenges for engineering informatics. Computers and Structures, 89(23–24), 2113–2132. doi:10.1016/j.compstruc.2011.07.010.

Dargush, G. F., & Sant, R. S. (2005). Evolutionary aseismic design and retrofit of structures with passive energy dissipation. Earthquake Engineering & Structural Dynamics, 34(13), 1601–1626. doi:10.1002/eqe.497.

Rahimi, F., Aghayari, R., & Samali, B. (2020). Application of tuned mass dampers for structural vibration control: A state-of-the-art review. Civil Engineering Journal, 6(8), 1622–1651. doi:10.28991/cej-2020-03091571.

Fisco, N. R., & Adeli, H. (2011). Smart structures: Part I—Active and semi-active control. Scientia Iranica, 18(3), 275–284. doi:10.1016/j.scient.2011.05.034.

Fisco, N. R., & Adeli, H. (2011). Smart structures: Part II — Hybrid control systems and control strategies. Scientia Iranica, 18(3), 285–295. doi:10.1016/j.scient.2011.05.035.

Behnamfar, F., & Almohammad-albakkar, M. (2023). Development of Steel Yielding Seismic Dampers Used to Improve Seismic Performance of Structures: A Comprehensive Review. International Journal of Engineering, 36(4), 746–775. doi:10.5829/ije.2023.36.04a.13.

Bakhshinezhad, S., & Mohebbi, M. (2020). Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II. Structures, 24, 678–689. doi:10.1016/j.istruc.2020.02.004.

Ghabussi, A., Asgari Marnani, J., & Rohanimanesh, M. S. (2021). Seismic performance assessment of a novel ductile steel braced frame equipped with steel curved damper. Structures, 31, 87–97. doi:10.1016/j.istruc.2021.01.073.

Wang, W., Song, J. liang, Su, S. qing, Cai, H. li, & Zhang, R. fu. (2021). Experimental and numerical studies of an axial tension-compression corrugated steel plate damper. Thin-Walled Structures, 163, 107498. doi:10.1016/j.tws.2021.107498.

Lin, K., Zhou, A., Liu, H., Liu, Y., & Huang, C. (2020). Shear thickening fluid damper and its application to vibration mitigation of stay cable. Structures, 26, 214–223. doi:10.1016/j.istruc.2020.04.018.

Ghanbari, A., Mousavi, H., Almohammad-albakkar, M., & Habibi, M. R. (2022). Seismic Responses of Multi-Storey Structures Equipped with Linear and Nonlinear Viscous Dampers: A Comparison Study. SSRN Electronic Journal, 1-22. doi:10.2139/ssrn.4253077.

Setiawan, A. F., Santoso, A. K., Darmawan, M. F., Adi, A. D., & Ismanti, S. (2023). Nonlinear Analysis for Investigating Seismic Performance of a Spun Pile-Column of Viaduct Structure. Civil Engineering Journal, 9(7), 1561-1578. doi:10.28991/CEJ-2023-09-07-02.

Silwal, B., Michael, R. J., & Ozbulut, O. E. (2015). A superelastic viscous damper for enhanced seismic performance of steel moment frames. Engineering Structures, 105, 152-164. doi:10.1016/j.engstruct.2015.10.005.

Mousavi, H., Sabbagh Yazdi, S. R., & Almohammad-Albakkar, M. (2022). A novel method for efficient design of frame structures equipped with nonlinear viscous dampers by using computational results of cylindrical friction damper. Australian Journal of Structural Engineering, 24(1), 50–66. doi:10.1080/13287982.2022.2088055.

Gjukaj, A., Salihu, F., Muriqi, A., & Cvetanovski, P. (2023). Numerical Behavior of Extended End-Plate Bolted Connection under Monotonic Loading. HighTech and Innovation Journal, 4(2), 294-308. doi:10.28991/HIJ-2023-04-02-04.

Zheng, J., Zhang, C., & Li, A. (2019). Experimental investigation on the mechanical properties of curved metallic plate dampers. Applied Sciences, 10(1), 269. doi:10.3390/app10010269.

Chen, S. J., & Chang, C. C. (2012). Experimental study of low yield point steel gusset plate connections. Thin-Walled Structures, 57, 62–69. doi:10.1016/j.tws.2012.03.014.

Milanchian, R., & Hosseini, M. (2020). Torsional response reduction of plan-asymmetric vertical seismic isolation by appropriate distribution of viscous and viscoelastic dampers. Structures, 27, 962–974. doi:10.1016/j.istruc.2020.07.009.

Xiao, Y., Zhou, Y., & Huang, Z. (2021). Efficient direct displacement-based seismic design approach for structures with viscoelastic dampers. Structures, 29, 1699–1708. doi:10.1016/j.istruc.2020.12.067.

Abdul Aziz, M., Muhtasim, S., & Ahammed, R. (2022). State-of-the-art recent developments of large magnetorheological (MR) dampers: a review. Korea Australia Rheology Journal, 34(2), 105–136. doi:10.1007/s13367-022-00021-2.

Saravanan, M., Goswami, R., & Palani, G. S. (2018). Replaceable Fuses in Earthquake Resistant Steel Structures: A Review. International Journal of Steel Structures, 18(3), 868–879. doi:10.1007/s13296-018-0035-9.

Chen, S. J., & Jhang, C. (2006). Cyclic behavior of low yield point steel shear walls. Thin-Walled Structures, 44(7), 730–738. doi:10.1016/j.tws.2006.08.002.

Ayyash, A. jbury N. A., & Hejazi, F. (2023). Development of hybrid performance-based optimization algorithm for structures equipped with vibration damper devices. Archives of Civil and Mechanical Engineering, 23(2), 123. doi:10.1007/s43452-023-00665-z.

Ayyash, N., & Hejazi, F. (2022). Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm. Earthquake Engineering and Engineering Vibration, 21(2), 455–474. doi:10.1007/s11803-022-2088-1.

Ahmadie Amiri, H., Najafabadi, E. P., & Estekanchi, H. E. (2018). Experimental and analytical study of Block Slit Damper. Journal of Constructional Steel Research, 141, 167–178. doi:10.1016/j.jcsr.2017.11.006.

Dargush, G., & Soong, T. (1997). Passive Energy Dissipation and Active Control. Handbook of Structural Engineering, Second Edition, 1-28.

Christopoulos, C., & Filiatrault, A. (2006). Principles of passive supplemental damping and seismic. IUSS Press, Pavia, Italy.

Fukumoto, T. (1989). A Study on steel Damper with Honeycomb Shaped-Openings. Annual Meeting (Summaries of AIJ), Architectural Institute of Japan, Tokyo, Japan.

Naoki, T. (1991). A study on Steel Plate D. with Honeycomb-s. Openings s. to Low Cycle F. AIJ-37, Architectural Institute of Japan, Tokyo, Japan.

Wada, A., Huang, Y. H., Yamada, T., Ono, Y., Sugiyama, S., Baba, M., & Miyabara, T. (1997). Actual size and real time speed tests for hysteretic steel damper. Proceedings of Stessa, 97, 778–785.

Amadeo, B. C., OH, S. H., & Akiyama, H. (1998). Ultimate Energy Absorption Capacity of Slit-Type Steel Plates Subjected To Shear Deformations. Journal of Structural and Construction Engineering (Transactions of AIJ), 63(503), 139–147. doi:10.3130/aijs.63.139_1.

Javidan, M. M., & Kim, J. (2024). An experimental study on a steel multi-slit damper for seismic retrofit of soft-first story structures. Steel and Composite Structures, 50(6), 721–734. doi:10.12989/scs.2024.50.6.721.

Srisuwan, T., & Yooprasertchai, E. (2024). Effects of unbonded prestressing steel tendons and slit dampers on the seismic behavior of precast concrete beam-column joints. Structures, 59. doi:10.1016/j.istruc.2023.105721.

Payawal, J. M. G., & Kim, D. K. (2023). Evaluation of the Seismic Performance of Single-Plate Metallic Slit Dampers Using Experimental and Numerical Data. Buildings, 13(9), 2188. doi:10.3390/buildings13092188.

Lee, C. H., Ju, Y. K., Min, J. K., Lho, S. H., & Kim, S. D. (2015). Non-uniform steel strip dampers subjected to cyclic loadings. Engineering Structures, 99, 192–204. doi:10.1016/j.engstruct.2015.04.052.

González-Sanz, G., Escolano-Margarit, D., & Benavent-Climent, A. (2020). A new stainless-steel tube-in-tube damper for seismic protection of structures. Applied Sciences, 10(4), 1410. doi:10.3390/app10041410.

Zheng, J., Li, A., & Guo, T. (2015). Analytical and experimental study on mild steel dampers with non-uniform vertical slits. Earthquake Engineering and Engineering Vibration, 14(1), 111–123. doi:10.1007/s11803-015-0010-9.

Oh, S. H. (1998). Seismic Design of Energy Dissipating Multi-Story Frame with Flexible-Stiff Mixed Type Connection, Ph.D. Thesis, Tokyo University, Japan.

Chan, R. W. K., & Albermani, F. (2008). Experimental study of steel slit damper for passive energy dissipation. Engineering Structures, 30(4), 1058–1066. doi:10.1016/j.engstruct.2007.07.005.

Saffari, H., Hedayat, A. A., & Nejad, M. P. (2013). Post-Northridge connections with slit dampers to enhance strength and ductility. Journal of Constructional Steel Research, 80, 138-152. doi:10.1016/j.jcsr.2012.09.023.

Oh, S. H., Kim, Y. J., & Ryu, H. S. (2009). Seismic performance of steel structures with slit dampers. Engineering Structures, 31(9), 1997–2008. doi:10.1016/j.engstruct.2009.03.003.

Karavasilis, T. L., Kerawala, S., & Hale, E. (2012). Hysteretic model for steel energy dissipation devices and evaluation of a minimal-damage seismic design approach for steel buildings. Journal of Constructional Steel Research, 70, 358–367. doi:10.1016/j.jcsr.2011.10.010.

Hedayat, A. A. (2015). Prediction of the force displacement capacity boundary of an unbuckled steel slit damper. Journal of Constructional Steel Research, 114, 30–50. doi:10.1016/j.jcsr.2015.07.003.

Askariani, S. S., Garivani, S., & Aghakouchak, A. A. (2020). Application of slit link beam in eccentrically braced frames. Journal of Constructional Steel Research, 170, 106094. doi:10.1016/j.jcsr.2020.106094.

Roeder, C. W., & Popov, E. P. (1978). Eccentrically Braced Steel Frames for Earthquakes. Journal of the Structural Division (ASCE), 104(3), 391–412. doi:10.1061/jsdeag.0004875.

Bastami, M., & Ahmady Jazany, R. (2018). Development of Eccentrically Interconnected Braced Frame (EIC-BF) for seismic regions. Thin-Walled Structures, 131, 451–463. doi:10.1016/j.tws.2018.07.021.

Johnson S.M. (2005). Improved seismic performance of special concentrically braced frames. Master Thesis, University of Washington., Seattle, United States.

Metelli, G. (2013). Theoretical and experimental study on the cyclic behaviour of X braced steel frames. Engineering Structures, 46, 763–773. doi:10.1016/j.engstruct.2012.08.021.

Jazany, R. A., Hajirasouliha, I., & Farshchi, H. (2013). Influence of masonry infill on the seismic performance of concentrically braced frames. Journal of Constructional Steel Research, 88, 150–163. doi:10.1016/j.jcsr.2013.05.009.

Tremblay, R. (2001). Seismic behavior and design of concentrically braced steel frames. Engineering Journal, 38(3), 148–166. doi:10.62913/engj.v38i3.761.

Tremblay, R. (2002). Inelastic seismic response of steel bracing members. Journal of Constructional Steel Research, 58(5–8), 665–701. doi:10.1016/S0143-974X(01)00104-3.

Lumpkin, E. J., Hsiao, P. C., Roeder, C. W., Lehman, D. E., Tsai, C. Y., Wu, A. C., Wei, C. Y., & Tsai, K. C. (2012). Investigation of the seismic response of three-story special concentrically braced frames. Journal of Constructional Steel Research, 77, 131–144. doi:10.1016/j.jcsr.2012.04.003.

Karzad, A. S., Al-Sadoon, Z. A., Sagheer, A., & AlHamaydeh, M. (2022). Experimental and Nonlinear Finite Element Analysis Data for an Innovative Buckling Restrained Bracing System to Rehabilitate Seismically Deficient Structures. Data, 7(12), 171. doi:10.3390/data7120171.

Rafi, M. M., Lodi, S. H., Al-Sadoon, Z. A., Saatcioglu, M., & Palermo, D. (2022). Experimental Investigation of Dynamic Behavior of RC Frame Strengthened with Buckling-Restrained Bracing. Journal of Structural Engineering, 148(7), 4022076. doi:10.1061/(asce)st.1943-541x.0003371.

Rafi, M. M., Lodi, S. H., Al-Sadoon, Z. A., Saatcioglu, M., & Palermo, D. (2021). Shake-table testing of deficient reinforced concrete frame retrofitted with buckling restrained brace. ACI Structural Journal, 118(3), 161–173. doi:10.14359/51729351.

Al-Sadoon, Z. A., Saboor Karzad, A., Sagheer, A., & AlHamaydeh, M. (2022). Replaceable fuse buckling-restrained brace (BRB): Experimental cyclic qualification testing and NLFEA modeling. Structures, 39, 997–1015. doi:10.1016/j.istruc.2022.03.081.

Al-Sadoon, Z. A., Saatcioglu, M., & Palermo, D. (2020). New Buckling-Restrained Brace for Seismically Deficient Reinforced Concrete Frames. Journal of Structural Engineering, 146(6), 4020082. doi:10.1061/(asce)st.1943-541x.0002439.

Bastami, M., & Ahmady Jazany, R. (2019). Development of centrically fused braced frame (CFBF) for seismic regions. Soil Dynamics and Earthquake Engineering, 127, 105856. doi:10.1016/j.soildyn.2019.105856.

Yoo, J.-H., Roeder, C. W., & Lehman, D. E. (2008). Analytical Performance Simulation of Special Concentrically Braced Frames. Journal of Structural Engineering, 134(6), 881–889. doi:10.1061/(asce)0733-9445(2008)134:6(881).

Boostani, M., Rezaifar, O., & Gholhaki, M. (2018). Introduction and seismic performance investigation of the proposed lateral bracing system called “OGrid.” Archives of Civil and Mechanical Engineering, 18(4), 1024–1041. doi:10.1016/j.acme.2018.02.003.

Lee, H. M., Oh, H. S., Huh, C., Oh, S. Y., Yoon, H. M., & Moon, S. T. (2002). Ultimate Energy Absorption Capacity of Steel Plate Slit Dampers Subjected to Shear Force. Steel Structures, 12(2), 71–79.

Benavent-Climent, A. (2010). A brace-type seismic damper based on yielding the walls of hollow structural sections. Engineering Structures, 32(4), 1113–1122. doi:10.1016/j.engstruct.2009.12.037.

Ghabraie, K., Chan, R., Huang, X., & Xie, Y. M. (2010). Shape optimization of metallic yielding devices for passive mitigation of seismic energy. Engineering Structures, 32(8), 2258–2267. doi:10.1016/j.engstruct.2010.03.028.

Aminzadeh, M., Kazemi, H. S., & Tavakkoli, S. M. (2020). A numerical study on optimum shape of steel slit dampers. Advances in Structural Engineering, 23(14), 2967–2981. doi:10.1177/1369433220927281.

Tagawa, H., Yamanishi, T., Takaki, A., & Chan, R. W. K. (2016). Cyclic behavior of seesaw energy dissipation system with steel slit dampers. Journal of Constructional Steel Research, 117, 24–34. doi:10.1016/j.jcsr.2015.09.014.

Katal Mohseni, P., Zahedi-khameneh, A., & Naeemifar, O. (2020). Study of the Effect of Geometric Parameters of Steel Block Slit Dampers on Energy Absorption. International Journal of Steel Structures, 20(3), 1069–1079. doi:10.1007/s13296-020-00343-3.

Kim, J. (2019). Development of seismic retrofit devices for building structures. International Journal of High-Rise Buildings, 8(3), 221–227. doi:10.21022/IJHRB.2019.8.3.221.

Guo, W., Ma, C., Yu, Y., Bu, D., & Zeng, C. (2020). Performance and optimum design of replaceable steel strips in an innovative metallic damper. Engineering Structures, 205, 110118. doi:10.1016/j.engstruct.2019.110118.

Askariani, S. S., & Garivani, S. (2020). Introducing and numerical study of a new brace-type slit damper. Structures, 27, 702–717. doi:10.1016/j.istruc.2020.06.019.

Zhao, B., Lu, B., Zeng, X., & Gu, Q. (2021). Experimental and numerical study of hysteretic performance of new brace type damper. Journal of Constructional Steel Research, 183, 106717. doi:10.1016/j.jcsr.2021.106717.

Javidan, M. M., Nasab, M. S. E., & Kim, J. (2021). Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers. Steel and Composite Structures, 39(5), 645–664. doi:10.12989/scs.2021.39.5.645.

Benavent-Climent, A., Escolano-Margarit, D., Arcos-Espada, J., & Ponce-Parra, H. (2021). New metallic damper with multiphase behavior for seismic protection of structures. Metals, 11(2), 1–30. doi:10.3390/met11020183.

Almohammad-Albakkar, M., & Behnamfar, F. (2022). Numerical investigation of grooved gusset plate damper for using in cross-braced frames. Journal of Constructional Steel Research, 196, 107434. doi:10.1016/j.jcsr.2022.107434.

Almohammad-albakkar, M., Behnamfar, F., & Ataei, A. (2024). Experimental and numerical study of grooved gusset plate damper for cross-braced frames. Journal of Constructional Steel Research, 216, 108611. doi:10.1016/j.jcsr.2024.108611.

Almohammad-albakkar M. and Behnamfar F., (2023). Seismic Performance Assessment of Cross-Braced Steel Frame Equipped with New Damper, 13th International Congress on Civil Engineering, 9-11 May, 2023, Tehran, Iran.

Heyrani Moghaddam, S., & Shooshtari, A. (2023). Numerical and experimental investigation on seismic performance of proposed steel slit dampers. Journal of Constructional Steel Research, 200, 107646. doi:10.1016/j.jcsr.2022.107646.

Hui, C., Zhou, Z., Li, Y., Jiao, Y., & Hai, R. (2022). Quasi-static cyclic loading experiment and analysis of double-side slotted steel tube shear damper. Archives of Civil and Mechanical Engineering, 23(1), 45. doi:10.1007/s43452-022-00581-8.

Kang, H., Adane, M., Chun, S., & Kim, J. (2022). Development of a seismic retrofit system made of steel frame with vertical slits Development of a seismic retrofit system made of steel frame with vertical slits. Steel and Composite Structures, 44(2), 269–280.

Bae, J., Lee, C. H., Park, M., Alemayehu, R. W., Ryu, J., Kim, Y., & Ju, Y. K. (2020). Cyclic loading performance of radius-cut double coke-shaped strip dampers. Materials, 13(18), 3920. doi:10.3390/MA13183920.

Zhou, X., Tan, Y., Ke, K., Yam, M. C. H., Zhang, H., & Xu, J. (2023). An experimental and numerical study of brace-type long double C-section steel slit dampers. Journal of Building Engineering, 64, 105555. doi:10.1016/j.jobe.2022.105555.

He, L., Sun, X., Bu, H., & Tang, Z. (2022). Seismic Performance of MRSF Structures Damped with Steel Slit Shear Panels. International Journal of Structural Stability and Dynamics, 22(03n04), 2240013. doi:10.1142/s0219455422400132.

Ahmadie Amiri, H., Pournamazian Najafabadi, E., Esmailpur Estekanchi, H., & Ozbakkaloglu, T. (2020). Performance-based seismic design and assessment of low-rise steel special moment resisting frames with block slit dampers using endurance time method. Engineering Structures, 224, 110955. doi:10.1016/j.engstruct.2020.110955.

Oh, S. H., & Park, H. Y. (2022). Experimental study on seismic performance of steel slit damper under additional tensile load. Journal of Building Engineering, 50, 104110. doi:10.1016/j.jobe.2022.104110.

Lee, K. S., Lee, B. G., & Jung, J. S. (2022). Seismic Strengthening of R/C Buildings Retrofitted by New Window‐Type System Using Non‐Buckling Slit Dampers Examined via Pseudo‐Dynamic Testing and Nonlinear Dynamic Analysis. Applied Sciences, 12(3), 1220. doi:10.3390/app12031220.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-019


  • There are currently no refbacks.

Copyright (c) 2024 Zaid A. Al-Sadoon, M. Almohammad-albakkar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.