Load Capacity and Bending Strength of Double-Acting Friction Stir Welded AA6061 Hollow Panels

Nurul Muhayat, Muhammad Budi Utama, Ericha Dwi Wahyu Syah Putri, Eko Prasetya Budiana, Aditya Rio Prabowo, Yohanes P. D. S. Depari, . Triyono

Abstract


Aluminum alloy hollow panels are essential components in both civil and mechanical structures, such as building floors or large vehicle platforms. They enhance rigidity while staying lightweight and conserving material volume. In its application, this panel must be joined using welding methods. One common issue encountered in aluminum welding is the formation of porosity defects. Solid-state welding methods like Friction Stir Welding (FSW) can be a solution to address this problem. The FSW joining process on hollow panels cannot be completed in one welding operation due to their thickness. The FSW process must be performed on both surfaces, which requires a relatively long time. Therefore, FSW needs to be developed into a Double-acting FSW that utilizes two tools simultaneously. These two tools introduce two sources of heat input, pressing force, and friction-stirring, resulting in a novel response that needs further research. This study delves into the impact of welding speed variations in Double-Acting FSW on the load capacity and bending strength of AA 6061 hollow panel joints. Welding speeds of 20, 30, and 40 mm/min were tested alongside rotational speed (1500 rpm), tilt angle (2°), and shoulder diameter (24 mm). It was discovered that reducing welding speed enhances both load capacity and bending strength. Notably, specimens welded at 20 mm/min exhibited a load capacity of 15.61 kN and bending strength of 52 MPa, highlighting the potential of slower speeds for superior weld performance.

 

Doi: 10.28991/CEJ-2024-010-08-018

Full Text: PDF


Keywords


Hollow Panel; Aluminum Alloy; Double-Acting Friction Stir Welding; Welding Speed.

References


Georgantzia, E., Gkantou, M., Kamaris, G. S., & Kansara, K. D. (2022). Design of aluminium alloy channel sections under minor axis bending. Thin-Walled Structures, 174. doi:10.1016/j.tws.2022.109098.

Kale, V. N., Rajesh, J., Maiyalagan, T., Lee, C. W., & Gnanamuthu, R. M. (2022). Fabrication of Ni–Mg–Ag alloy electrodeposited material on the aluminium surface using anodizing technique and their enhanced corrosion resistance for engineering application. Materials Chemistry and Physics, 282, 125900. doi:10.1016/j.matchemphys.2022.125900.

Ardika, R. D., Triyono, T., Muhayat, N., & Triyono. (2021). A review porosity in aluminum welding. Procedia Structural Integrity, 33(C), 171–180. doi:10.1016/j.prostr.2021.10.021.

Zhao, C., Ma, J., & Du, S. (2019). The mechanical behaviour of new long-span hollow-core roofs based on aluminum alloy honeycomb panels. Materiali in Tehnologije, 53(3), 311–318. doi:10.17222/mit.2018.075.

Li, S., Dong, H., Wang, X., Liu, Z., Tan, Z., Shangguan, L., Lu, Q., & Zhong, S. (2020). Effect of repair welding on microstructure and mechanical properties of 7N01 aluminum alloy MIG welded joint. Journal of Manufacturing Processes, 54, 80–88. doi:10.1016/j.jmapro.2020.03.009.

Komarasamy, M., Smith, C., Darsell, J., Choi, W., Jana, S., & Grant, G. (2021). Microstructure and mechanical properties of friction stir welded Haynes 282. Materials Characterization, 182, 1–8. doi:10.1016/j.matchar.2021.111558.

Dehghani, M., Amadeh, A., & Akbari Mousavi, S. A. A. (2013). Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Materials and Design, 49, 433–441. doi:10.1016/j.matdes.2013.01.013.

Liu, Q., Ni, D., Wang, W., Xiang, Y., Han, P., Zhang, T., Qiao, K., Qiang, F., Wang, L., & Wang, K. (2023). Improved mechanical properties of magnesium alloy thick plate joint via uniform microstructure by differential double-shoulder friction stir welding. Materials Letters, 338. doi:10.1016/j.matlet.2023.134045.

Liu, Q., Wang, W., Zhang, T., Ma, Q., Han, P., Ni, D., Qiao, K., & Wang, K. (2024). Low-cycle fatigue behaviour of magnesium alloy thick plate joints fabricated via differential double-shoulder friction stir welding. International Journal of Fatigue, 183. doi:10.1016/j.ijfatigue.2024.108264.

Liu, Q., Wang, W., Peng, P., Zhang, T., Han, P., Guan, X., Wang, Z., Qiao, K., Cai, J., & Wang, K. (2023). Microstructure evolution and strengthening mechanism of friction stir welded joint of 20 mm-thick AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 33(11), 3295–3308. doi:10.1016/s1003-6326(23)66334-4.

Xu, W., Wang, H., Luo, Y., Li, W., & Fu, M. W. (2018). Mechanical behavior of 7085-T7452 aluminum alloy thick plate joint produced by double-sided friction stir welding: Effect of welding parameters and strain rates. Journal of Manufacturing Processes, 35, 261–270. doi:10.1016/j.jmapro.2018.07.028.

Marichamy, M., & Babu, S. (2021). The selection of optimum process parameters on A319 aluminum alloy in friction stir welding MCDM method. Materials Today: Proceedings, 37, 228–231. doi:10.1016/j.matpr.2020.05.080.

Sahu, S. K., Mishra, D., Mahto, R. P., Sharma, V. M., Pal, S. K., Pal, K., Banerjee, S., & Dash, P. (2018). Friction stir welding of polypropylene sheet. Engineering Science and Technology, an International Journal, 21(2), 245–254. doi:10.1016/j.jestch.2018.03.002.

Dewangan, S. K., Tripathi, M. K., & Manoj, M. K. (2019). Effect of welding speeds on microstructure and mechanical properties of dissimilar friction stir welding of AA7075 and AA5083 alloy. Materials Today: Proceedings, 27, 2713–2717. doi:10.1016/j.matpr.2019.12.190.

Liu, H. J., Hou, J. C., & Guo, H. (2013). Effect of welding speed on microstructure and mechanical properties of self-reacting friction stir welded 6061-T6 aluminum alloy. Materials and Design, 50, 872–878. doi:10.1016/j.matdes.2013.03.105.

Haribalaji, V., Boopathi, S., & Asif, M. M. (2021). Optimization of friction stir welding process to join dissimilar AA2014 and AA7075 aluminum alloys. Materials Today: Proceedings, 50, 2227–2234. doi:10.1016/j.matpr.2021.09.499.

Hendrato, Jamasri, Triyono, & Puspitasari, P. (2022). Mechanical Properties and Microstructure Evolution of Double-Sided Friction Stir Welding AA6061-T6. Key Engineering Materials, 935, 73–81. doi:10.4028/p-08610s.

Hendrato, Puspitasari, P., Jamasri, & Triyono. (2024). Fatigue crack growth rate and mechanical properties of one-step double-side friction stir welded AA6061-T6. Results in Engineering, 21. doi:10.1016/j.rineng.2024.101958.

Priyasudana, D., Crisdion, S. A., Puspitasari, P., Triyono, Jamasri, Andoko, & Pramono, D. D. (2023). Double side friction stir welding effect on mechanical properties and corrosion rate of aluminum alloy AA6061. Heliyon, 9(2). doi:10.1016/j.heliyon.2023.e13366.

Hilmawan, M. I., Putri, E. D. W. S., Muhayat, N., Manurung, Y. H. P., Ilhamdi, Sulardjaka, Hendrato, & Triyono. (2024). Effect of tools rotational speed on the mechanical properties of one-step double-acting friction stir welded aluminum alloy AA 6061 hollow panel. International Journal of Lightweight Materials and Manufacture, 7(3), 467–479. doi:10.1016/j.ijlmm.2024.02.002.

Yu, Y., Wang, P., Pei, X., Dong, P., & Fang, H. (2020). Fatigue resistance characterization of frictions stir welds between complex aluminum extrusions: An experimental and finite element study. International Journal of Fatigue, 141, 1–14. doi:10.1016/j.ijfatigue.2020.105861.

Ye, Y., Li, W., & Guo, Z. X. (2020). Performance of concrete-filled stainless steel tubes subjected to tension: Experimental investigation. Thin-Walled Structures, 148, 1–15,. doi:10.1016/j.tws.2020.106602.

Das, D., Bag, S., Pal, S., & Sharma, A. (2023). Material Defects in Friction Stir Welding through Thermo–Mechanical Simulation: Dissimilar Materials with Tool Wear Consideration. Materials, 16(1), 1–20. doi:10.3390/ma16010301.

Ranjan, R., Khan, A. R., Parikh, C., Jain, R., Mahto, R. P., Pal, S., Pal, S. K., & Chakravarty, D. (2016). Classification and identification of surface defects in friction stir welding: An image processing approach. Journal of Manufacturing Processes, 22, 237–253. doi:10.1016/j.jmapro.2016.03.009.

Mahto, R. P., Kumar, R., & Pal, S. K. (2020). Characterizations of weld defects, intermetallic compounds and mechanical properties of friction stir lap welded dissimilar alloys. Materials Characterization, 160, 110115. doi:10.1016/j.matchar.2019.110115.

Dialami, N., Cervera, M., & Chiumenti, M. (2020). Defect formation and material flow in Friction Stir Welding. European Journal of Mechanics - A/Solids, 80, 103912. doi:10.1016/j.euromechsol.2019.103912.

Reimann, M., Goebel, J., Gartner, T. M., & dos Santos, J. F. (2017). Refilling termination hole in AA 2198–T851 by refill friction stir spot welding. Journal of Materials Processing Technology, 245, 157–166. doi:10.1016/j.jmatprotec.2017.02.025.

Yuan, X., Zhang, Z., Gao, Q., Zhou, L., Song, K., Zou, X., Sopu, D., Hu, L., Sun, B., & Eckert, J. (2022). Enhanced mechanical properties of Zr65Cu15Ni10Al10bulk metallic glass by simultaneously introducing surface grooves and multiple shear bands. Journal of Materials Research and Technology, 21, 1490–1506. doi:10.1016/j.jmrt.2022.09.117.

Prabha, K. A., Putha, P. K., & Prasad, B. S. (2018). Effect of tool rotational speed on mechanical properties of aluminium alloy 5083 weldments in friction stir welding. Materials Today: Proceedings, 5(9), 18535–18543. doi:10.1016/j.matpr.2018.06.196.

Qian, J., Li, J., Sun, F., Xiong, J., Zhang, F., & Lin, X. (2013). An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints. Scripta Materialia, 68(3–4), 175–178. doi:10.1016/j.scriptamat.2012.10.008.

Khan, N. Z., Siddiquee, A. N., Khan, Z. A., & Shihab, S. K. (2015). Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. Journal of Alloys and Compounds, 648, 360–367. doi:10.1016/j.jallcom.2015.06.246.

Zettler, R., Vugrin, T., & Schmücker, M. (2010). Effects and defects of friction stir welds. Friction Stir Welding, 245–276, Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9781845697716.2.245.

Ahmed, M. M. Z., Wynne, B. P., Rainforth, W. M., & Threadgill, P. L. (2012). Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A. Materials Characterization, 64, 107–117. doi:10.1016/j.matchar.2011.12.005.

Sato, Y. S., Takauchi, H., Park, S. H. C., & Kokawa, H. (2005). Characteristics of the kissing-bond in friction stir welded Al alloy 1050. Materials Science and Engineering: A, 405(1–2), 333–338. doi:10.1016/j.msea.2005.06.008.

Essa, G. M. F., Zakria, H. M., Mahmoud, T. S., & Khalifa, T. A. (2018). Microstructure examination and microhardness of friction stir welded joint of (AA7020-O) after PWHT. HBRC Journal, 14(1), 22–28. doi:10.1016/j.hbrcj.2015.05.002.

Kadlec, M., Růžek, R., & Nováková, L. (2015). Mechanical behaviour of AA 7475 friction stir welds with the kissing bond defect. International Journal of Fatigue, 74, 7–19. doi:10.1016/j.ijfatigue.2014.12.011.

Priya, P., Johnson, D. R., & Krane, M. J. M. (2017). Precipitation during cooling of 7XXX aluminum alloys. Computational Materials Science, 139, 273–284. doi:10.1016/j.commatsci.2017.08.008.

Jung, B. B., Lee, H. K., & Park, H. C. (2013). Effect of grain size on the indentation hardness for polycrystalline materials by the modified strain gradient theory. International Journal of Solids and Structures, 50(18), 2719–2724. doi:10.1016/j.ijsolstr.2013.05.002.

Wang, Y., Zhao, G., Sun, L., Wang, X., Lv, Z., & Sun, Y. (2023). Effects of billet heating temperature and extrusion speed on the microstructures and mechanical properties of the longitudinal welds in aluminum alloy profiles with complex cross-section. Vacuum, 207, 1–15. doi:10.1016/j.vacuum.2022.111578.

Jo, H., Kang, M., Park, G. W., Kim, B. J., Choi, C. Y., Park, H. S., Shin, S., Lee, W., Ahn, Y. S., & Jeon, J. B. (2020). Effects of cooling rate during quenching and tempering conditions on microstructures and mechanical properties of carbon steel flange. Materials, 13(18), 1–16. doi:10.3390/MA13184186.

Nitu, E. L., Diakhaté, M., Bădulescu, C., Grédiac, M., Blaysat, B., Iordache, D. M., Bosneag, A., Adrien, J., Maire, E., Dhondt, M., & Demmouche, Y. (2022). Analyzing defects and their effects on the strength of a three-layer FSW joint by using X-ray microtomography, localized spectrum analysis, and acoustic emission. Materials Characterization, 190, 1–20. doi:10.1016/j.matchar.2022.112069.

Charpentier, J. B., Perderiset, C., Bouvard, J. L., Georgi, F., Pino-Muñoz, D., & Rasselet, F. (2021). On the influence of eccentricity on Thick Adherend Shear Tests. International Journal of Adhesion and Adhesives, 110, 1–11. doi:10.1016/j.ijadhadh.2021.102910.

Kubit, A., Trzepieciński, T., Gadalińska, E., Slota, J., & Bochnowski, W. (2021). Investigation into the effect of rfssw parameters on tensile shear fracture load of 7075-t6 alclad aluminium alloy joints. Materials, 14(12), 1–28. doi:10.3390/ma14123397.

Kubit, A., Trzepieciński, T., Kluz, R., Ochałek, K., & Slota, J. (2022). Multi-Criteria Optimisation of Friction Stir Welding Parameters for EN AW-2024-T3 Aluminium Alloy Joints. Materials, 15(15), 1–28. doi:10.3390/ma15155428.

Jia, X., Hao, K., Luo, Z., & Fan, Z. (2022). Plastic Deformation Behavior of Metal Materials: A Review of Constitutive Models. Metals, 12(12), 1–33. doi:10.3390/met12122077.

Sahu, P. K., & Pal, S. (2017). Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW. Journal of Materials Processing Technology, 243, 442–455. doi:10.1016/j.jmatprotec.2017.01.009.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Triyono Triyono

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message