Retrofitting Bolted Flange Plate (BFP) Connections Using Haunches and Extended End-Plates

Budi Suswanto, Fikri Ghifari, Yuyun Tajunnisa, Data Iranata

Abstract


In Indonesia, one of the most common forms of connection is the Bolted Flange Plate (BFP) moment connection. Nevertheless, their current setups do not satisfy the strict requirements outlined in AISC 358-22. Therefore, this study uses advanced sub-assemblage numerical modeling simulations using ANSYS software to propose a novel way to integrate a half WF extended end-plate connection and trapezoidal haunch in order to fortify BFP moment connections, which does not meet the requirement required by AISC 358-22. Methodologically, the research entails comprehensive modeling and analysis of the proposed retrofit scheme. Six distinct connection models were scrutinized: the BFP-UR representing the existing connection extracted from a structure in Surabaya; the BFP-R4E and BFP-R4ES models, embodying connection retrofits with a half WF extended end-plate; and the BFP-RTR and BFP-RSTR models, embodying connection retrofits with a trapezoidal haunch. Additionally, the BFP-RTRE model integrates both an extended end plate and a trapezoidal haunch in the retrofit scheme. The analytical findings unveil that the proposed strengthening paradigm manifests heightened and superior rotational moment characteristics relative to the pre-reinforcement configuration, albeit encountering stiffness degradation attributable to buckling effects on the main beam. Notably, the analysis indicates that degradation ensues when rotational displacement exceeds 4%, with only the BFP-RTR and BFP-RSTR models exhibiting degradation at a 3% rotation threshold. Crucially, the connections demonstrate the capability to withstand 80% of the beam’s plastic moment under a 4% rotational displacement, thereby aligning with the stringent requisites delineated in AISC 341-22.

 

Doi: 10.28991/CEJ-2024-010-08-03

Full Text: PDF


Keywords


Retrofitting of Moment Connections; Bolted Flange Plate; Prequalified Connections; Finite Element Method; Connection Capacity.

References


Civjan, S. A., Engelhardt, M. D., & Gross, J. L. (2000). Retrofit of Pre-Northridge Moment-Resisting Connections. Journal of Structural Engineering, 126(4), 445–452. doi:10.1061/(asce)0733-9445(2000)126:4(445).

Bruneau, M., Uang, C.-M., & Sabelli, R. (2011). Ductile Design of Steel Structures. McGraw Hill, New York, United States.

Uang, C. M., Bondad, D., & Lee, C. H. (1998). Cyclic performance of haunch repaired steel moment connections: Experimental testing and analytical modeling. Engineering Structures, 20(4–6), 552–561. doi:10.1016/S0141-0296(97)00093-X.

Saberi, H., Kheyroddin, A., & Gerami, M. (2016). Welded haunches for seismic retrofitting of bolted T-stub connections and flexural strengthening of simple connections. Engineering Structures, 129, 31–43. doi:10.1016/j.engstruct.2016.09.050.

Saberi, H., Kheyroddin, A., & Gerami, M. (2017). Seismic strengthening of weak bolted end plate connections using welded haunches. International Journal of Steel Structures, 17(2), 743–755. doi:10.1007/s13296-017-6028-2.

Shi, G., Zhao, H., Chen, X., & Xiao, T. (2020). Experimental study of cyclic behavior of retrofitted beam-to-column joints with welded haunches. Journal of Constructional Steel Research, 171, 106146. doi:10.1016/j.jcsr.2020.106146.

Asada, H., Tanaka, T., Yamada, S., & Matoba, H. (2014). Proposal for seismic retrofit of beam-to-column connection by the addition of H-section haunches to beams using bolt connection. International Journal of Steel Structures, 14(4), 865–871. doi:10.1007/s13296-014-1217-8.

D’Aniello, M., Montuori, R., Nastri, E., Piluso, V., & Todisco, P. (2024). Parametric Finite Element Study on FREEDAM Beam to Column Joints with Different Details of the Haunch Slotted Holes. Applied Sciences (Switzerland), 14(7), 2770. doi:10.3390/app14072770.

Richards, P. W., & Lee, H. (2024). Special moment frame connections with shear-yielding haunches. Engineering Structures, 304. doi:10.1016/j.engstruct.2024.117635.

Sahil, M., Bahrami, A., Waqas, H. A., Amin, F., Mansoor Khan, M., Iqbal, F., Fawad, M., & Najam, F. A. (2024). Seismic performance evaluation of exterior reinforced concrete beam-column connections retrofitted with economical perforated steel haunches. Results in Engineering, 22, 102179. doi:10.1016/j.rineng.2024.102179.

Zhang, Y., Wang, M., & Shi, G. (2024). Mechanical behavior of the extended end-plate connections of a portal frame with various retrofitted constructions under loading. Structures, 63. doi:10.1016/j.istruc.2024.106477.

Qiao, H., Xie, X., Hu, X., Wang, W., & Hong, F. (2024). Experimental study on large deflections of beam–column joints with reinforced flange plates. Journal of Constructional Steel Research, 217. doi:10.1016/j.jcsr.2024.108634.

Sumner, E. A., & Murray, T. M. (2002). Behavior of Extended End-Plate Moment Connections Subject to Cyclic Loading. Journal of Structural Engineering, 128(4), 501–508. doi:10.1061/(asce)0733-9445(2002)128:4(501).

ANSI/AISC 358-16. (2016). Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. American Institute of Steel Construction (AISC), Chicago, United States.

Solhmirzaei, A., Tahamouli Roudsari, M., & Hosseini Hashemi, B. (2021). A new detail for the panel zone of beam-to-wide flange column connections with endplate. Structures, 34, 1108–1123. doi:10.1016/j.istruc.2021.08.061.

Yılmaz, O., Bekiroğlu, S., Alemdar, F., Arslan, G., Sevim, B., & Ayvaz, Y. (2019). Experimental investigation of bolted stiffened end-plate and bolted flange-plate connections. Latin American Journal of Solids and Structures, 16(3), e170. doi:10.1590/1679-78255089.

Sato, A., Newell, J. D., & Uang, C.-M. (2008). Cyclic Behavior and Seismic Design of Bolted Flange Plate Steel Moment Connections. Engineering Journal, 45(4), 221–232. doi:10.62913/engj.v45i4.946.

ANSI/AISC 358-22. (2022). Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. American Institute of Steel Construction (AISC), Chicago, United States.

ANSI/AISC 341-22. (2022). Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction (AISC), Chicago, United States.

Kang, H., & Kim, J. (2015). Progressive Collapse of Steel Moment Frames Subjected to Vehicle Impact. Journal of Performance of Constructed Facilities, 29(6), 4014172. doi:10.1061/(asce)cf.1943-5509.0000665.

Kulak, G. (2002). Design guide 17 – High Strength bolts – A Primer for Structural Engineers. American Institute of Steel Construction (AISC), Chicago, United States.

Madenci, E., & Guven, I. (2015). The finite element method and applications in engineering using ANSYS®. Springer, New York, United States.

ANSYS Inc. (2020). ANSYS Fluent Meshing User’s Guide. ANSYS Drive, Southpointe, United States.

ANSI/AISC 341-16. (2016). Seismic Provisions for Structural Steel Buildings. American Institute of Steel Construction (AISC), Chicago, United States.

FEMA-350.(2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. Federal Emergency Management Agency (FEMA), Washington, United States.

Noor, U. A., Jadoon, M. A., Onyelowe, K., Shehzad, A., Ghaedi, K., Alabduljabbar, H., & Javed, M. F. (2024). Non-linear finite element analysis of SFRC beam-column joints under cyclic loading: enhancing ductility and structural integrity. Scientific Reports, 14(1), 18152. doi:10.1038/s41598-024-69270-1.

Fares, A. M., & Bakir, B. B. (2024, July). Parametric study on the flexural behavior of steel fiber reinforced concrete beams utilizing nonlinear finite element analysis. Structures, 65, 106688. doi:10.1016/j.istruc.2024.106688.

Abusafaqa, F. R., Samaaneh, M. A., & Dwaikat, M. B. M. (2022). Improving ductility behavior of sway-special exterior beam-column joint using ultra-high-performance fiber-reinforced concrete. Structures, 36, 979–996. doi:10.1016/j.istruc.2021.12.059.

Zhao, X., Wen, F., Chen, Y., Hu, J., Yang, X., Dai, L., & Cao, S. (2018). Experimental study on the static performance of steel reinforced concrete columns with high encased steel ratios. Structural Design of Tall and Special Buildings, 27(15), e1536. doi:10.1002/tal.1536.

Chen, C. C., Chen, C. C., & Hoang, T. T. (2016). Role of concrete confinement of wide-flange structural steel shape in steel reinforced concrete columns under cyclic loading. Engineering Structures, 110, 79–87. doi:10.1016/j.engstruct.2015.12.002.

Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the New Zealand Society for Earthquake Engineering, 22(3), 155–166. doi:10.5459/bnzsee.22.3.155-166.

Wang, W., Cai, H., Bai, C., Bao, H., Gao, B., Yuan, Z., & Wang, K. (2023). Seismic performance of partially encased concrete composite columns with corrugated web. Journal of Building Engineering, 77, 107481. doi:10.1016/j.jobe.2023.107481.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Budi Suswanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message