Experimental Study on Seismic Performance of Kancingan Timber Frame Infill Walls Building

Sari Octavia, Hartawan Madeali, . Nasruddin, Mohammad Mochsen Sir

Abstract


This study was carried out to examine the seismic performance of Kancingan house walls and the behavior of their timber frames, brick infill, and anchor nails during cyclic loading tests. Kancingan House, a timber frame building with brick infill walls, is a cost-effective and efficient method of wall construction commonly used in houses in Merauke, Indonesia. The experimental method was used to determine the seismic performance of the walls built using buswood with a module width of 100 cm and a height of 130 cm through cyclic load testing. The result showed a maximum lateral load of 26.43 kN with a displacement of 19.08 mm under compression loading and 28.78 kN under tensile loading with 15.6 mm displacement. The initial stiffness was measured at 5.03 kN and 9.59 kN/mm for compressive and tensile loading, respectively. Furthermore, ultimate load and displacement of 21.14 kN and 23.02 kN were obtained at a displacement of 30.68 mm under compressive loading and 25.23 mm under tensile loading. The ductility values of 10.76 and 9.78 were obtained under compressive and tensile loading. In conclusion, the study found that each wall element supports the seismic performance of the structure. As opposed to the timber frame, the infill walls have not suffered much damage except a hair crack because of the presence of anchor nails that keep the infill wall from collapsing when it loses its bond with the timber frames.

 

Doi: 10.28991/CEJ-2024-010-08-06

Full Text: PDF


Keywords


Kancingan House; Timber Frame; Infill Wall; Merauke.

References


Khadka, S. S., Acharya, S., Acharya, A., & Veletzos, M. J. (2023). Enhancement of Himalayan irregular stone masonry buildings for resilient seismic design. Frontiers in Built Environment, 9. doi:10.3389/fbuil.2023.1086008.

Acharya, O., Dahal, A., & Shrestha, K. C. (2023). Confined masonry in seismic regions: Application to a prototype building in Nepal. Structures, 47, 2281–2299. doi:10.1016/j.istruc.2022.12.045.

Cheng, X., Zou, Z., Zhu, Z., Zhai, S., Yuan, S., Mo, Y., Chen, W., & He, J. (2020). A new construction technology suitable for frame partitioned infill walls with sliding nodes and large openings: Test results. Construction and Building Materials, 258(8), 119644. doi:10.1016/j.conbuildmat.2020.119644.

Dutu, A., Gomes Ferreira, J., Guerreiro, L., Branco, F., & Gonçalves, A. M. (2012). Timbered masonry for earthquake resistance in Europe. Materiales de Construcción, 62(308), 615–628. doi:10.3989/mc.2012.01811.

Goncalves, A. M., Ferreira, J. G., Guerreiro, L., & Branco, F. (2015). Experimental characterization of timber framed masonry walls cyclic behaviour. Structural Engineering and Mechanics, 53(2), 189–204. doi:10.12989/sem.2015.53.2.189.

Octavia, S., Madeali, H., Junus, N., & Sir, M. M. (2024). Architectural Analysis of Rumah Kancingan in Merauke. International Journal of Technology, 15(2), 289–298. doi:10.14716/ijtech.v15i2.6687.

Ren, C., Bian, R., & Li, S. (2018). On Technology and Ritual of Chuandou House Construction in Southwest China: The Case of Dong Minority Area. Built Heritage, 2(1), 39–48. doi:10.1186/BF03545701.

Qu, Z., Fu, X., Kishiki, S., & Cui, Y. (2020). Behavior of masonry infilled Chuandou timber frames subjected to in-plane cyclic loading. Engineering Structures, 211, 110449. doi:10.1016/j.engstruct.2020.110449.

Ergun, S. F. Y., & Schuller, M. (2021). Timber frame system after the western influence on the houses of Istanbul. Eighth Annual CHS Conference, 17-18 April, 2021, Cambridge, United Kingdom.

Aktaş, Y. D., Akyüz, U., Türer, A., Erdil, B., & Güçhan, N. Ş. (2014). Seismic resistance evaluation of traditional ottoman TimberFrame Himiş houses: Frame loadings and material tests. Earthquake Spectra, 30(4), 1711–1732. doi:10.1193/011412EQS011M.

Ortega, J., Vasconcelos, G., & Correia, M. (2014). An overview of the seismic strengthening techniques traditionally applied in vernacular architecture. 9th International Masonry Conference, 7-9 July, 2014, Guimarães, Portugal.

Topan, A., Octavia, S., & Soleman, H. (2018). Analysis of the semi-permanent house in Merauke city in terms of aesthetic value in architecture. Journal of Physics: Conference Series, 1025, 012021. doi:10.1088/1742-6596/1025/1/012021.

Octavia, S., Raubaba, H. S., Hematang, Y. I. P., & Topan, A. (2018). The Feasibility of the Kancingan House Structure in Merauke City. Proceedings of the International Conference on Science and Technology (ICST 2018), 421-425. doi:10.2991/icst-18.2018.88.

Topan, A., Syanjayanta, B., Mita, M. S. W., & Makruf, A. M. A. (2023). Development of Structural Materials and House Construction in Merauke. Technium: Romanian Journal of Applied Sciences and Technology, 16, 470–474. doi:10.47577/technium.v16i.10032.

Subagyono, R. R. D. J. N., Qi, Y., Chaffee, A. L., Amirta, R., & Marshall, M. (2021). Pyrolysis-gc/ms analysis of fast growing wood macaranga species. Indonesian Journal of Science and Technology, 6(1), 141–158. doi:10.17509/ijost.v6i1.31917.

Heidari, A., Khaki, E., Younesi, H., & Lu, H. R. (2019). Evaluation of fast and slow pyrolysis methods for bio-oil and activated carbon production from eucalyptus wastes using a life cycle assessment approach. Journal of Cleaner Production, 241, 118394. doi:10.1016/j.jclepro.2019.118394.

Tjondro, J. A. (2014). Development and prospects of wood structural engineering in Indonesia. Seminar dan Lokakarya Rekayasa Struktur, Universitas Petra, Surabaya, Indonesia. (In Indonesian).

Syiemiong, H., & Marthong, C. (2021). A review on improved construction methods for clay-brick and concrete-block ordinary masonry buildings. Journal of Structural Integrity and Maintenance, 6(2), 67–83. doi:10.1080/24705314.2020.1862963.

Boudaud, C., Humbert, J., Baroth, J., Hameury, S., & Daudeville, L. (2015). Joints and wood shear walls modelling II: Experimental tests and FE models under seismic loading. Engineering Structures, 101, 743–749. doi:10.1016/j.engstruct.2014.10.053.

Meghlat, E. M., Oudjene, M., Ait-Aider, H., & Batoz, J. L. (2013). A new approach to model nailed and screwed timber joints using the finite element method. Construction and Building Materials, 41, 263–269. doi:10.1016/j.conbuildmat.2012.11.068.

Psycharis, I. N., Pantazopoulou, S. J., & Papadrakakis, M. (2015). Seismic assessment, behavior and retrofit of heritage buildings and monuments. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-319-16130-3.

Tu, L., Cui, Z., Xu, M., Feng, Y., & Li, T. (2021). Experimental study of traditional Chuan-dou frames infilled with wood panels under in-plane cyclic load. Journal of Building Engineering, 43, 102854. doi:10.1016/j.jobe.2021.102854.

Huang, H., Wu, Y., Li, Z., Sun, Z., & Chen, Z. (2018). Seismic behavior of Chuan-Dou type timber frames. Engineering Structures, 167, 725–739. doi:10.1016/j.engstruct.2017.10.072.

Bağbancı, M. B., & Bağbancı, Ö. K. (2018). The Dynamic Properties of Historic Timber-Framed Masonry Structures in Bursa, Turkey. Shock and Vibration, 2018(1). doi:10.1155/2018/3257434.

Hejazi, M., Hoseyni, M., & Çiftçi, A. (2022). In–plane cyclic behaviour of half-timbered walls with fired brick infill. Journal of Building Engineering, 54, 104580. doi:10.1016/j.jobe.2022.104580.

Shen, Y., Yan, X., Yu, P., Liu, H., Wu, G., & He, W. (2021). Seismic resistance of timber frames with mud and stone infill walls in a Chinese traditional village dwelling. Buildings, 11(12). doi:10.3390/buildings11120580.

Makarios, T., & Demosthenous, M. (2006). Seismic response of traditional buildings of Lefkas Island, Greece. Engineering Structures, 28(2), 264–278. doi:10.1016/j.engstruct.2005.08.002.

Poletti, E., & Vasconcelos, G. (2015). Seismic behaviour of traditional timber frame walls: experimental results on unreinforced walls. Bulletin of Earthquake Engineering, 13(3), 885–916. doi:10.1007/s10518-014-9650-9.

Ruggieri, N., & Zinno, R. (2014). Seismic assessment of “Baraccato” system: Constructive analysis and experimental investigations. Second European conference on earthquake engineering and seismology, 25-29 August, 2014, Istanbul. Turkey.

Xu, R., Qi, Y., Huang, H. (2024). Experimental Study on the Seismic Performance of Traditional Timber Frame with Wattle and Daub Infill. Proceedings of the 6th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Lecture Notes in Civil Engineering, Springer, Singapore. doi:10.1007/978-981-99-3362-4_66.

Zhang, H., Tang, Z., Duan, Y., & Chen, Z. (2023). Seismic Performance of SFRC Shear Walls with Window Opening and the Substitution Effect for Steel Bars. Buildings, 13(6), 1550. doi:10.3390/buildings13061550.

Octavia, S., Raubaba, H. S., & Simorangkir, Y. V. (2019). Wood and steel as a material alternative of concrete replacement in house structures in merauke city. IOP Conference Series: Earth and Environmental Science, 343(1), 012231. doi:10.1088/1755-1315/343/1/012231.

Yin, J., Tang, D., Chen, T., Yang, Y., Ju, L., Wan, Y., ... & Yue, X. (2023). Seismic Risk Assessment and Rehabilitation Method of Existing RCC Structures Using Micro Concrete. Civil Engineering Journal, 9(12), 3008-3018. doi:10.28991/CEJ-2023-09-12-04.

Kouris, L. A. S., & Kappos, A. J. (2012). Detailed and simplified non-linear models for timber-framed masonry structures. Journal of Cultural Heritage, 13(1), 47–58. doi:10.1016/j.culher.2011.05.009.

Szczepański, M., & Migda, W. (2020). Analysis of validation and simplification of timber-frame structure design stage with PU-foam insulation. Sustainability (Switzerland), 12(15), 5990. doi:10.3390/su12155990.

Xie, Q., Tong, Y., Zhang, L., Li, S., & Wang, L. (2021). Seismic Behavior of Chinese Traditional Timber Frames with Masonry Infill Wall: Experimental Tests and Hysteretic Model. International Journal of Architectural Heritage, 15(8), 1130–1144. doi:10.1080/15583058.2019.1665140.

Kuantitatif, P. P. (2016). Qualitative Quantitative Research Methods and R&D. Alfabeta, Bandung, Indonesia. (In Indonesian).

Susila, I. G. A. (2014). Experimental and numerical studies of masonry wall panels and timber frames of low-rise structures under seismic loadings in Indonesia. Ph.D. Thesis, The University of Manchester, Manchester, United Kingdom.

ASTM E2126. (2019). Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings. ASTM International, Pennsylvania, United States. doi:10.1520/E2126-19.

Shen, Y., Yan, X., Liu, H., Wu, G., & He, W. (2022). Enhancing the In-Plane Behavior of a Hybrid Timber Frame–Mud and Stone Infill Wall Using PP Band Mesh on One Side. Polymers, 14(4), 773. doi:10.3390/polym14040773.

Ruggieri, N., Tampone, G., & Zinno, R. (2015). In-Plane Versus Out-of-Plane “behavior” of an Italian Timber Framed System - The Borbone Constructive System: Historical Analysis and Experimental Evaluation. International Journal of Architectural Heritage, 9(6), 696–711. doi:10.1080/15583058.2015.1041189.

Xue, S., Liu, X., Wang, Y., & Zhou, H. (2021). Lateral force resistance of structural insulated panels consisting of wood-based sheathing and a polyurethane core. Journal of Building Engineering, 40. doi:10.1016/j.jobe.2021.102317.

Gonçalves, A. M., Ferreira, J. G., Guerreiro, L., & Branco, F. (2013). numerical modelling and experimental characterization of pombalino “frontal” wall cyclic behavior. 4th International Conference on Integrity, Reliability and Failure, 23-27 June, Funchal, Portugal.

Kildashti, K., Alinoori, F., Moshiri, F., & Samali, B. (2021). Computational simulation of light timber framing connections strengthened with self-tapping screws. Journal of Building Engineering, 44(March), 103003. doi:10.1016/j.jobe.2021.103003.

Dutu, A., Sakata, H., & Yamazaki, Y. (2017). Comparison between different types of connections and their influence on timber frames with masonry infill structures’ seismic behavior. 16th Conference on Earthquake Engineering, 9-13 January, 2017, Santiago, Chile.

Vasconcelos, G., Poletti, E., Salavessa, E., Jesus, A. M. P., Lourenço, P. B., & Pilaon, P. (2013). In-plane shear behaviour of traditional timber walls. Engineering Structures, 56, 1028–1048. doi:10.1016/j.engstruct.2013.05.017.

Vieux-Champagne, F., Sieffert, Y., Grange, S., Polastri, A., Ceccotti, A., & Daudeville, L. (2014). Experimental analysis of seismic resistance of timber-framed structures with stones and earth infill. Engineering Structures, 69, 102–115. doi:10.1016/j.engstruct.2014.02.020.

Langenbach, R. (2007). From “Opus Craticium” to the “Chicago frame”: Earthquake-resistant traditional construction. International Journal of Architectural Heritage, 1(1), 29–59. doi:10.1080/15583050601125998.

Hutajulu, M., Tarigan, J., & Tarigan, P. (2019). Analisa Pushover dan Eksperimen Struktur Portal dengan Dinding Batubata dengan Menggunakan Angkur pada Kolom dan Balok pada Non Engineered Building. Media Komunikasi Teknik Sipil, 24(2), 158. doi:10.14710/mkts.v24i2.19914.

Wadi, H., Amziane, S., Toussaint, E., & Taazount, M. (2019). Lateral load-carrying capacity of hemp concrete as a natural infill material in timber frame walls. Engineering Structures, 180, 264–273. doi:10.1016/j.engstruct.2018.11.046.

Dutu, A., Sakata, H., Yamazaki, Y., & Shindo, T. (2016). In-Plane Behavior of Timber Frames with Masonry Infills under Static Cyclic Loading. Journal of Structural Engineering, 142(2), 1–18. doi:10.1061/(asce)st.1943-541x.0001405.

Benavent-Climent, A., Ramírez-Márquez, A., & Pujol, S. (2018). Seismic strengthening of low-rise reinforced concrete frame structures with masonry infill walls: Shaking-table test. Engineering Structures, 165, 142–151. doi:10.1016/j.engstruct.2018.03.026.

Casagrande, D., Polastri, A., Sartori, T., Loss, C., & Chiodega, M. (2016). Experimental campaign for the mechanical characterization of connection systems in the seismic design of timber buildings. World Conference on Timber Engineering (WCTE), 22-25 August, 2016, Vienna, Austria.

Parisse, F., Poletti, E., Dutu, A., & Rodrigues, H. (2021). Numerical modeling of the seismic performance of Romanian timber-framed masonry walls. Engineering Structures, 239. doi:10.1016/j.engstruct.2021.112272.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Sari Octavia, Hartawan Madeali, Nasruddin Junus, Mohammad Mochsen Sir

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message