Effect of Infilled Frames on Reduction Factor (R) for RC Irregular Structure
Abstract
Doi: 10.28991/CEJ-2024-010-08-09
Full Text: PDF
Keywords
References
Nasr, N. E., Fayed, M. N., Hussien, G., & El-Makhlasawi, A. M. (2022). The Effect of Shear Wall Openings on the Response Reduction Factor. Civil Engineering Journal (Iran), 8(4), 796–822. doi:10.28991/CEJ-2022-08-04-013.
Abdelrhman, S. A., Naser, N. E., Sorour, T. M., & Fayed, M. N. The Effect of Soil Structural Interaction on Evaluation of Seismic Response Reduction Factor of Multi-Story Concrete Buildings. Al-Azhar University Civil Engineering Research Magazine (CERM), 43(3), 149-170.
Palancı, M., Demir, A., & Kayhan, A. H. (2021). The investigation of displacement demands of single degree of freedom models using real earthquake records compatible with TBEC-2018. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 251-263.
Elsadany, S. M., Fayed, M. N., Sorour, T. M., Anwar, A. M., & Nasr, N. E. (2024). Response Reduction Factor for Structures with Significant Irregularities on Different Soil Stratum. Civil Engineering Journal (Iran), 10(3), 757–778. doi:10.28991/CEJ-2024-010-03-07.
Hussein, G., Tork, B., Eid, N., & Al Sweify, H. (2018). Nonlinear static analysis of concrete shear walls system under seismic loads. Journal of Engineering and Applied Science, 65(1), 43-48.
Tomer, S., & Bhandari, M. (2023). Evaluation of Seismic Response of Irregular Buildings: A Review. IOP Conference Series: Earth and Environmental Science, 1110(1), 012012. doi:10.1088/1755-1315/1110/1/012012.
Fayed, M. N., Aboul-Nour, L. A., & El-Masry, S. S. (2018). Evaluation of seismic response modification factor of multistory buildings designed according to Egyptian code. IOSR Journal of Mechanical and Civil Engineering, 15(11), 66-68.
Miranda, E., & Bertero, V. V. (1994). Evaluation of Strength Reduction Factors for Earthquake-Resistant Design. Earthquake Spectra, 10(2), 357–379. doi:10.1193/1.1585778.
Elnashai, A. S., & Mwafy, A. M. (2002). Overstrength and force reduction factors of multistorey reinforced-concrete buildings. Structural Design of Tall Buildings, 11(5), 329–351. doi:10.1002/tal.204.
Devkota, S., & Motra, G. B. (2020). Response Reduction Factor for RC Buildings considering the Effects of Masonry Infill. Proceedings of 8th IOE Graduate Conference, 8, 632 – 636.
ECP-203-2012. (2012). The Egyptian Code for Design and Construction of Concrete Structures. Housing and Building Research Center, Cairo, Egypt. (In Arabic).
ASCE/SEI 7-10. (2013). Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784412916.
Ghimire, K., & Chaulagain, H. (2021). Common irregularities and its effects on reinforced concrete building response. Structural Mechanics of Engineering Constructions and Buildings, 17(1), 63–73. doi:10.22363/1815-5235-2021-17-1-63-73.
Sriwastav, R. K., & Basu, D. (2022). Vertical spectra consistent with horizontal seismic hazard. Soil Dynamics and Earthquake Engineering, 157, 107242. doi:10.1016/j.soildyn.2022.107242.
Allena, P., & Bhavani Chowdary, T. (2020). Effect of Irregularities on Seismic Performance of High-Rise Structures. IOP Conference Series: Materials Science and Engineering, 998(1), 012064. doi:10.1088/1757-899x/998/1/012064.
Ali, T., Eldin, M. N., & Haider, W. (2023). The Effect of Soil-Structure Interaction on the Seismic Response of Structures Using Machine Learning, Finite Element Modeling and ASCE 7-16 Methods. Sensors, 23(4), 2047. doi:10.3390/s23042047.
Joshi, A., Raman, B., Mohan, C. K., & Cenkeramaddi, L. R. (2024). Application of a new machine learning model to improve earthquake ground motion predictions. Natural Hazards, 120(1), 729-753. doi:10.1007/s11069-023-06230-4.
Sriwastav, R.K., Basu, D. (2023). Simplified Damping Modification Factor for Vertical Response Spectra. Proceedings of 17th Symposium on Earthquake Engineering (Volume 4), SEE 2022, Lecture Notes in Civil Engineering, 332. Springer, Singapore. doi:10.1007/978-981-99-1459-3_52.
Shrestha, J. K. (2020). Response Reduction Factor for Mansory Buildings. Nepal Journal of Science and Technology, 19(1), 196–203. doi:10.3126/njst.v19i1.29802.
Makhmalbaf, M. O., Nav, F. M., & Samani, M. Z. (2011). Assessment of the Adaptive Pushover Analysis Using Displacement-based Loading in Prediction the Seismic Behavior of the Unsymmetric-Plan Buildings. World Academy of Science, Engineering and Technology, 75, 377-383.
Shah, P., & John, P. R. (2024). Study of Seismic Effect on Different Types of Infill Walls. International Journal of Recent Technology and Engineering (IJRTE), 12(5), 21–25. doi:10.35940/ijrte.d7950.12050124.
Al-Rousan, R. Z. (2023). Anchored CFRP ropes for flexural capacity recovering of thermally damaged RC one-way slabs. Alexandria Engineering Journal, 76, 757–774. doi:10.1016/j.aej.2023.06.086.
Requena-Garcia-Cruz, M. V., Bento, R., Durand-Neyra, P., & Morales-Esteban, A. (2022). Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon. Structures, 38, 599–617. doi:10.1016/j.istruc.2022.02.024.
Abdel Raheem, S. E., Ahmed, M. M. M., Ahmed, M. M., & Abdel-shafy, A. G. A. (2018). Evaluation of plan configuration irregularity effects on seismic response demands of L-shaped MRF buildings. Bulletin of Earthquake Engineering, 16(9), 3845–3869. doi:10.1007/s10518-018-0319-7.
Cimellaro, G. P., Giovine, T., & Lopez-Garcia, D. (2014). Bidirectional pushover analysis of irregular structures. Journal of Structural Engineering, 140(9), 04014059. doi:10.1061/(ASCE)ST.1943-541X.0001032.
Priestley, M. J. N. (2000). Performance based seismic design. Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 325–346. doi:10.5459/bnzsee.33.3.325-346.
Mondal, A., Ghosh, S., & Reddy, G. R. (2013). Performance-based evaluation of the response reduction factor for ductile RC frames. Engineering Structures, 56, 1808–1819. doi:10.1016/j.engstruct.2013.07.038.
Kappos, A. J. (1997). Seismic damage indices for RC buildings: evaluation of concepts and procedures. Progress in Structural Engineering and Materials, 1(1), 78–87. doi:10.1002/pse.2260010113.
Abou-Elfath, H., Shamel Fahmy, A., & Mohamed Khalifa, K. (2018). Response modification factors of buckling-restrained braced frames designed according to the Egyptian code. Alexandria Engineering Journal, 57(4), 2851–2864. doi:10.1016/j.aej.2018.07.001.
Deka, R. B. B., & Pathak, J. (2014). Retrofitting open ground storey building with Masonry Walls in Guwahati city. 15th Symposium on Earthquake Engineering Indian Institute of Technology, Roorkee, India.
ASCE/SEI 7-16. (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414248.
IBC-2012. (2012). International Building Code. International Code Council, Washington, United States.
Gatscher, J. A., & Bachman, R. E. (2012). Elements of 2012 IBC/ASCE 7-10 nonstructural seismic provisions: Bridging the implementation gap. The 15th World Conference on Earthquake Engineering, 1-10.
Pradhan, S., & Paudel, S. (2023). Investigation of Plastic Hinge Properties on Push over Analysis of Low-Rise. 3rd National Conference on Earthquake Engineering-NEPAL, 20 January, 2023, Bhaktapur, Nepal.
Science, E., Selim, M., Metwaly, M., & Elshamy, E. (2024). Studying Several Parameters on Unreinforced Masonry Infill Walls R C Framed Structure by Seismostruct Program. In Current Research in Environmental Science and Ecology Letters, 1(1), 1-7. doi:10.33140/cresel.01.01.04.
Oggu, P., Gopikrishna, K., & Nagariya, A. (2021). Seismic behavior and response reduction factors for concrete moment-resisting frames. Bulletin of Earthquake Engineering, 19(13), 5643–5663. doi:10.1007/s10518-021-01184-z.
Ismaeil, M. (2018). Seismic Capacity Assessment of Existing RC Building by Using Pushover Analysis. Civil Engineering Journal, 4(9), 2034. doi:10.28991/cej-03091136.
Kaushik, H. B., Rai, D. C., & Jain, S. K. (2007). Stress-strain characteristics of clay brick masonry under uniaxial compression. Journal of materials in Civil Engineering, 19(9), 728-739. doi:10.1061/(ASCE)0899-1561(2007)19:9(728).
Cavaleri, L., & Di Trapani, F. (2014). Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling. Soil Dynamics and Earthquake Engineering, 65, 224-242. doi:10.1016/j.soildyn.2014.06.016.
Poudel, N., & Chaulagain, H. (2024). Numerical investigation of nonlinear soil-structure interaction effects on response of irregular RC buildings. Results in Engineering, 22(April), 102161. doi:10.1016/j.rineng.2024.102161.
Pirsaheb, H., Moradi, M. J., & Milani, G. (2020). A Multi-Pier MP procedure for the non-linear analysis of in-plane loaded masonry walls. Engineering Structures, 212, 110534. doi:10.1016/j.engstruct.2020.110534.
Rodrigues, H., Varum, H., Arêde, A., & Costa, A. (2012). Comparative efficiency analysis of different nonlinear modelling strategies to simulate the biaxial response of RC columns. Earthquake Engineering and Engineering Vibration, 11(4), 553–566. doi:10.1007/s11803-012-0141-1.
Bandyopadhyay, S., Parulekar, Y. M., Sengupta, A., & Chattopadhyay, J. (2021, August). Structure soil structure interaction of conventional and base-isolated building subjected to real earthquake. Structures, 32, 474-493. doi:10.1016/j.istruc.2021.03.069.
Titiksh, A. (2017). Effects of irregularities on the seismic response of a medium rise structure. Asian Journal of Civil Engineering (BHRC), 18(8), 1307-1314.
Prasanth, S., Ghosh, G., Gupta, P. K., Kumar, V., Paramasivam, P., & Dhanasekaran, S. (2023). Selection of Response Reduction Factor Considering Resilience Aspect. Buildings, 13(3), 626. doi:10.3390/buildings13030626.
Pandian, A. V. P., Arunachalam, K. P., Avudaiappan, S., Jasmin, S. S., Romero, L. M. B., & Awoyera, P. O. (2024). Modification of response reduction factors of overhead water tanks based on ductility factor. Discover Applied Sciences, 6(4), 192. doi:10.1007/s42452-024-05762-z.
DOI: 10.28991/CEJ-2024-010-08-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 mai refaat elhadary
This work is licensed under a Creative Commons Attribution 4.0 International License.