Experimental Study on the Effect of Flow Velocity and Slope on Stream Bank Stability (Part I)

Jawad Kadhim, Mohanned Q. Waheed, Haitham A. Hussein, Saad F. A. Al-Wakel

Abstract


The erosion of riverbanks is a significant and capricious national concern. The Al Muwahada channel in Iraq experiences instability in its banks, resulting in failure, retreat, and morphological alterations. These issues are mostly caused by factors such as the velocity of the flow, the angle of the slope, and type of soil. This study investigated the behavior of canal bank soil in response to erosion and variations in slope angle. Therefore, a physical model of a case study was established in the laboratory. Additionally, a slope angle of 26˚ is being utilized, which has not been previously studied in the laboratory. This angle will be tested with five different velocity values: 0.101 m/s, 0.116 m/s, 0.12 m/s, 0.13 m/s, and 0.135 m/s. The bank's deformation was measured for a period of 12 hours, which was divided into 4 equal intervals for each velocity. The study determined that a riverbank with a slope of 26˚ is more resistant to erosion when the velocity of the water is below 0.12 m/s. Velocities equal to or greater than 0.12 m/s have a substantial impact on the erosion of the riverbed. According to this study, a velocity of 0.12 m/s or higher leads to increased erosion of the riverbank. This is equivalent to a velocity of 0.804 m/s in the prototype channel. The section of the riverbank that has suffered the greatest damage due to erosion is the upper two-thirds. The used methodology supports global efforts to increase information about the behavior of river banks with unexplored rivers that have different flow velocities and bank slope angles.

 

Doi: 10.28991/CEJ-2024-010-08-013

Full Text: PDF


Keywords


Erosion; Riverbank; Slope Angle; Velocity of Flow; Sediment; River Banks.

References


Thorne, C. R., & Lewin, J. (2020). Bank processes, bed material movement and planform development in a meandering river. Adjustments of the fluvial system. Routledge, Milton Park, United Kingdom.

Darby, S. E., & Thorne, C. R. (1996). Numerical Simulation of Widening and Bed Deformation of Straight Sand-Bed Rivers. I: Model Development. Journal of Hydraulic Engineering, 122(4), 184–193. doi:10.1061/(asce)0733-9429(1996)122:4(184).

Millar, R. G. (2000). Influence of bank vegetation on alluvial channel patterns. Water Resources Research, 36(4), 1109–1118. doi:10.1029/1999WR900346.

Simon, A., Curini, A., Darby, S. E., & Langendoen, E. J. (2000). Bank and near-bank processes in an incised channel. Geomorphology, 35(3–4), 193–217. doi:10.1016/s0169-555x(00)00036-2.

Goodson, J. M., Gurnell, A. M., Angold, P. G., & Morrissey, I. P. (2002). Riparian seed banks along the lower River Dove, UK: Their structure and ecological implications. Geomorphology, 47(1), 45–60. doi:10.1016/S0169-555X(02)00140-X.

Eaton, B. C., Church, M., & Millar, R. G. (2004). Rational regime model of alluvial channel morphology and response. Earth Surface Processes and Landforms, 29(4), 511–529. doi:10.1002/esp.1062.

Deng, S., Xia, J., Zhou, Y., Zhou, M., & Zhu, H. (2024). Prediction and early-warning of bank erosion in the Middle Yangtze River, China. Catena, 242, 108105. doi:10.1016/j.catena.2024.108105.

Xia, J., Zong, Q., Deng, S., Xu, Q., & Lu, J. (2014). Seasonal variations in composite riverbank stability in the Lower Jingjiang Reach, China. Journal of Hydrology, 519, 3664–3673. doi:10.1016/j.jhydrol.2014.10.061.

Julian, J. P., & Torres, R. (2006). Hydraulic erosion of cohesive riverbanks. Geomorphology, 76(1–2), 193–206. doi:10.1016/j.geomorph.2005.11.003.

Zhou, Y., Xia, J., Deng, S., & Han, Z. (2024). Bank erosion under the impacts of hydraulic erosion, river stage change and revetment protection in the Middle Yangtze River. Geomorphology, 448, 109043. doi:10.1016/j.geomorph.2023.109043.

Thorne, C. R., & Tovey, N. K. (1981). Stability of composite river banks. Earth Surface Processes and Landforms, 6(5), 469–484. doi:10.1002/esp.3290060507.

Darby, S. E., & Thorne, C. R. (1996). Development and Testing of Riverbank-Stability Analysis. Journal of Hydraulic Engineering, 122(8), 443–454. doi:10.1061/(asce)0733-9429(1996)122:8(443).

Julien, P. Y. (2010). Erosion and sedimentation. Cambridge University Press, Cambridge, United Kingdom. doi:10.1029/EO052i006pIU292.

Aldefae, A. H., & Alkhafaji, R. A. (2021). Experimental and numerical modeling to investigate the riverbank’s stability. SN Applied Sciences, 3(2), 164. doi:10.1007/s42452-021-04168-5.

Duong Thi, T., & Do Minh, D. (2019). Riverbank Stability Assessment under River Water Level Changes and Hydraulic Erosion. Water, 11(12), 2598. doi:10.3390/w11122598.

Yang, C. T. (2006). Reclamation: Managing Water in the West Denver. Technical Service Center, Sedimentation and River Hydraulics Group, Bureau of Reclamation, US Department of Interior, Colorado, United States.

Sulaiman, M. S., Sinnakaudan, S. K., & Shukor, M. R. (2013). Near bed turbulence measurement with acoustic doppler velocimeter (ADV). KSCE Journal of Civil Engineering, 17(6), 1515–1528. doi:10.1007/s12205-013-0084-8.

Florsheim, J. L., Mount, J. F., & Chin, A. (2008). Bank erosion as a desirable attribute of rivers. BioScience, 58(6), 519-529. doi:10.1641/B580608.

Zhao, K., Gong, Z., Zhang, K., Wang, K., Jin, C., Zhou, Z., Xu, F., & Coco, G. (2020). Laboratory Experiments of Bank Collapse: The Role of Bank Height and Near-Bank Water Depth. Journal of Geophysical Research: Earth Surface, 125(5), 2019 005281. doi:10.1029/2019JF005281.

Maatooq, J. S., & Alkhafaji, H. (2022). Field Study of the Differential Movements Problems for the Construction Joints of Al-Shamiya Barrage -South of Iraq. Proceedings of the 39th IAHR World Congress, 2756–2764. doi:10.3850/iahr-39wc2521711920221.

Abdulwahd, A. K., & Maatooq, J. S. (2023). Experimental investigation of local scour under two oblong piers of a bridge crossing a sharp bend river. Journal of Water and Land Development, 58, 129–135. doi:10.24425/jwld.2023.146605.

Abdulwahd, A., & Maatooq, J. (2023). Effect of Bridge Piers Locations and Flow Intensity on Morphological Change in a 180-Degree River Bend. Engineering and Technology Journal, 41(11), 1–11. doi:10.30684/etj.2023.140134.1455.

Maatooq, J. S., & Adhab, B. A. (2017). Effect of Distance of the Submerged Vanes from the Outer Bank on Sediment Movement within 180° Bend. American Journal of Engineering and Applied Sciences, 10(3), 679–684. doi:10.3844/ajeassp.2017.679.684.

Abbass, Z. D., Maatooq, J. S., & Al-Mukhtar, M. M. (2023). Monitoring and Modelling Morphological Changes in Rivers Using RS and GIS Techniques. Civil Engineering Journal (Iran), 9(3), 531–543. doi:10.28991/CEJ-2023-09-03-03.

MOWR (2024). Ministry of water resources/ directorate of water resources of Abu-Ghareeb-Iraq (2022). Ministry of Water Resources, Baghdad, Iraq.

Chanson, H. (2004). Hydraulics of open channel flow. Elsevier, Amsterdam, Netherlands.

Samadi, A., Amiri-Tokaldany, E., Davoudi, M. H., & Darby, S. E. (2013). Experimental and numerical investigation of the stability of overhanging riverbanks. Geomorphology, 184, 1–19. doi:10.1016/j.geomorph.2012.03.033.

Amiri-Tokaldany, E., Dovoodi, M. H., Darby, S. E., & Taghavi, M. (2010). A method to estimate failure plane angle and tension crack depth. Conference Paper on River Flow 2010. Karlsruhe: Bundesanstalt für Wasserbau, 1293-1300.

Jamal, M., Khatun, S., Jha, S., Mehta, D., Dixit, S., Kumar, V., & Tiwari, D. K. (2024). Experimental investigation of the efficiency of stone revetment for different temporal variations with the static water condition. Journal of Water and Climate Change, 15(4), 1969–1980. doi:10.2166/wcc.2024.126.

Nama, A. H., Abbas, A. S., & Maatooq, J. S. (2022). Field and Satellite Images-Based Investigation of Rivers Morphological Aspects. Civil Engineering Journal (Iran), 8(7), 1339–1357. doi:10.28991/CEJ-2022-08-07-03.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-013

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Mohanned Qahtan waheed, Haitham A. Hussein, Saad F. A. AL-Wakel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message