Managing Green and Sustainable Technologies: Climate-Informed Corrosion Prediction for Steel Structures

Mohammad F. Tamimi, Ali Shehadeh, Odey Alshboul, Khaled Amaeyrh, Ghaidaa Taani, Samer Tamimi, Mohammad Faris, Eman Hazaimeh, Amani AL-Zboun, Motasem Nawafleh

Abstract


The unpredictability of atmospheric circumstances is one of the major elements that contribute to the capability to anticipate the corrosion growth in metal structures over time accurately. Climate shifts can potentially modify the long-term attributes of these factors throughout the operational life of metal structures, both those currently in existence and those newly developed. The impact of climate irregularity on the probabilistic nature of atmospheric variables, which significantly impact corrosion situations, can add intricacy to corrosion predictions in these constructions. This project presents an incorporated framework to quantify the impact of climate alteration on the corrosion rates of steel structures in Jordan. It considers the changes in environmental conditions, specifically temperature, relative humidity, and wind speed, and their impacts on atmospheric corrosion. Global Climate Models are employed to assess the long-term effects of climate transformation on these environmental circumstances. An analytical model for anticipating corrosion rate is integrated with climate transformation models to predict modifications in the corrosion rates of steel parts relative to historical situations. This project also examines the impact of climate transformation on the fluctuations of these climatic parameters and offers a contrast between historical data and projected conditions across the country. The findings indicate a significant increase in corrosion rates across Jordan, which calls for localized green building codes and standards to ensure that future infrastructure is sustainable and capable of withstanding the new climatic norms. This approach addresses the immediate challenges posed by climate change and contributes to the broader goals of sustainable urban development and managing green technology adoption in Jordan.

 

Doi: 10.28991/CEJ-2024-010-08-016

Full Text: PDF


Keywords


Steel Corrosion; Global Climate Change; Humidity Change; Temperature Change; Wind Speed Change.

References


Nguyen, M. N., Wang, X., & Leicester, R. H. (2013). An assessment of climate change effects on atmospheric corrosion rates of steel structures. Corrosion Engineering Science and Technology, 48(5), 359–369. doi:10.1179/1743278213Y.0000000087.

Guo, S., Si, R., Dai, Q., You, Z., Ma, Y., & Wang, J. (2019). A critical review of corrosion development and rust removal techniques on the structural/environmental performance of corroded steel bridges. Journal of Cleaner Production, 233(1), 126–146. doi:10.1016/j.jclepro.2019.06.023.

Di Sarno, L., Majidian, A., & Karagiannakis, G. (2021). The effect of atmospheric corrosion on steel structures: A state-of-the-art and case-study. Buildings, 11(12), 571. doi:10.3390/buildings11120571.

Vanem, E. (2013). Bayesian Hierarchical Space-Time Models with Application to Significant Wave Height. Ocean Engineering & Oceanography. Springer Berlin, Germany. doi:10.1007/978-3-642-30253-4.

Stott, P. (2016). How climate change affects extreme weather events: Research can increasingly determine the contribution of climate change to extreme events such as droughts. Science, 352(6293), 1517–1518. doi:10.1126/science.aaf7271.

Reguero, B. G., Losada, I. J., & Méndez, F. J. (2019). A recent increase in global wave power as a consequence of oceanic warming. Nature Communications, 10(1), 205. doi:10.1038/s41467-018-08066-0.

Williams, P. D., Cullen, M. J. P., Davey, M. K., & Huthnance, J. M. (2013). Mathematics applied to the climate system: Outstanding challenges and recent progress. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1991), 20120518. doi:10.1098/rsta.2012.0518.

McPherson, R. (2016). Impacts of climate change on flows in the Red River Basin. Final Report to the South-Central Climate Science Center, Norman, United States.

Khandel, O., & Soliman, M. (2021). Integrated Framework for Assessment of Time-Variant Flood Fragility of Bridges Using Deep Learning Neural Networks. Journal of Infrastructure Systems, 27(1), 4020045. doi:10.1061/(asce)is.1943-555x.0000587.

Khandel, O., & Soliman, M. (2019). Integrated Framework for Quantifying the Effect of Climate Change on the Risk of Bridge Failure Due to Floods and Flood-Induced Scour. Journal of Bridge Engineering, 24(9), 4019090. doi:10.1061/(asce)be.1943-5592.0001473.

Boone, A. A., Xue, Y., De Sales, F., Comer, R. E., Hagos, S., Mahanama, S., Schiro, K., Song, G., Wang, G., Li, S., & Mechoso, C. R. (2016). The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Climate Dynamics, 47(11), 3547–3573. doi:10.1007/s00382-016-3252-y.

Shaw, W. J., & Andersson, J. I. (2010). Atmospheric corrosion of carbon steel in the prairie regions. NACE Northern Area Western Conference, 14-18 March, 2010, San Antonio, United States.

National Centers for Environmental Information (NOAA). (2023). State of the Climate: Global Climate Report for 2022. National Centers for Environmental Information (NOAA), Asheville, United States.

Yang, J., Zhao, L., & Oleson, K. (2023). Large humidity effects on urban heat exposure and cooling challenges under climate change. Environmental Research Letters, 18(4), 44024. doi:10.1088/1748-9326/acc475.

LeBozec, N., Jönsson, M., & Thierry, D. (2004). Atmospheric corrosion of magnesium alloys: Influence of temperature, relative humidity, and chloride deposition. Corrosion, 60(4), 356–361. doi:10.5006/1.3287743.

Shinohara, T., Motoda, S., & Oshikawa, W. (2005). Evaluation of Corrosivity in Atmospheric Environment by ACM (Atmospheric Corrosion Monitor) Type Corrosion Sensor. Materials Science Forum, 475–479, 61–64. doi:10.4028/www.scientific.net/msf.475-479.61.

Samie, F., Tidblad, J., Kucera, V., & Leygraf, C. (2007). Atmospheric corrosion effects of HNO3-Influence of temperature and relative humidity on laboratory-exposed copper. Atmospheric Environment, 41(7), 1374–1382. doi:10.1016/j.atmosenv.2006.10.018.

Wang, X., Li, X., & Tian, X. (2015). Influence of temperature and relative humidity on the atmospheric corrosion of zinc in field exposures and laboratory environments by atmospheric corrosion monitor. International Journal of Electrochemical Science, 10(10), 8361–8373. doi:10.1016/s1452-3981(23)11102-3.

Nguyen, M. N., Leicester, R. H., Wang, C. H., & Foliente, G. C. (2013). Corrosion effects in the structural design of metal fasteners for timber construction. Structure and Infrastructure Engineering, 9(3), 275–284. doi:10.1080/15732479.2010.546416.

Zhang, Y., Ayyub, B. M., & Fung, J. F. (2022). Projections of corrosion and deterioration of infrastructure in United States coasts under a changing climate. Resilient Cities and Structures, 1(1), 98–109. doi:10.1016/j.rcns.2022.04.004.

Xu, M., & Yang, C. (2023). Mapping the chloride-induced corrosion damage risks for bridge decks under climate change. Structure and Infrastructure Engineering, 19(1), 1–17. doi:10.1080/15732479.2023.2236599.

Soliman, M., & Frangopol, D. M. (2015). Life-Cycle Cost Evaluation of Conventional and Corrosion-Resistant Steel for Bridges. Journal of Bridge Engineering, 20(1). doi:10.1061/(asce)be.1943-5592.0000647.

Abtahi, S., Liu, Z., & Li, Y. (2023). Corrosion-related parameter estimation for RC structures using UKF-based Bayesian nonlinear finite element model updating with seismic data. Mechanical Systems and Signal Processing, 191, 110169. doi:10.1016/j.ymssp.2023.110169.

Wu, Y. (2024). Machine learning-based predictive modeling for sustainable pervious concrete pavement design in the context of climate change mitigation. Master Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain.

Bastidas-Arteaga, E. (2018). Reliability of Reinforced Concrete Structures Subjected to Corrosion-Fatigue and Climate Change. International Journal of Concrete Structures and Materials, 12(1), 10. doi:10.1186/s40069-018-0235-x.

Wang, X., Stewart, M. G., & Nguyen, M. (2012). Impact of climate change on corrosion and damage to concrete infrastructure in Australia. Climatic Change, 110(3–4), 941–957. doi:10.1007/s10584-011-0124-7.

Stewart, M. G., Wang, X., & Nguyen, M. N. (2011). Climate change impact and risks of concrete infrastructure deterioration. Engineering Structures, 33(4), 1326–1337. doi:10.1016/j.engstruct.2011.01.010.

Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2013 – The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom. doi:10.1017/cbo9781107415324.

The Intergovernmental Panel on Climate Change (IPCC). (2007). Climate Change 2007: The Physical Science Basis. The Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, United Kingdom.

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1), 213–241. doi:10.1007/s10584-011-0156-z.

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498. doi:10.1175/BAMS-D-11-00094.1.

Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1107. doi:10.1175/2009BAMS2607.1.

Benarie, M., & Lipfert, F. L. (1986). A general corrosion function in terms of atmospheric pollutant concentrations and rain pH. Atmospheric Environment (1967), 20(10), 1947–1958. doi:10.1016/0004-6981(86)90336-7.

Feliu, S., Morcillo, M., & Feliu, S. (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters-II. Long-term forecasts. Corrosion Science, 34(3), 415–422. doi:10.1016/0010-938X(93)90113-U.

Feliu, S., Morcillo, M., & Feliu, S. (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters-I. Annual corrosion. Corrosion Science, 34(3), 403–414. doi:10.1016/0010-938X(93)90112-T.

de la Fuente, D., Castaño, J. G., & Morcillo, M. (2007). Long-term atmospheric corrosion of zinc. Corrosion Science, 49(3), 1420–1436. doi:10.1016/j.corsci.2006.08.003.

Cai, Y., Zhao, Y., Ma, X., Zhou, K., & Chen, Y. (2018). Influence of environmental factors on atmospheric corrosion in dynamic environment. Corrosion Science, 137, 163–175. doi:10.1016/j.corsci.2018.03.042.

Pei, Z., Cheng, X., Yang, X., Li, Q., Xia, C., Zhang, D., & Li, X. (2021). Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. Journal of Materials Science and Technology, 64(1), 214–221. doi:10.1016/j.jmst.2020.01.023.

de la Fuente, D., Díaz, I., Simancas, J., Chico, B., & Morcillo, M. (2011). Long-term atmospheric corrosion of mild steel. Corrosion Science, 53(2), 604–617. doi:10.1016/j.corsci.2010.10.007.

Enevoldsen, J. N., Hansson, C. M., & Hope, B. B. (1994). The influence of internal relative humidity on the rate of corrosion of steel embedded in concrete and mortar. Cement and Concrete Research, 24(7), 1373–1382. doi:10.1016/0008-8846(94)90122-8.

Schindelholz, E., Risteen, B. E., & Kelly, R. G. (2014). Effect of Relative Humidity on Corrosion of Steel under Sea Salt Aerosol Proxies. Journal of The Electrochemical Society, 161(10), C450–C459. doi:10.1149/2.0221410jes.

Alcántara, J., de la Fuente, D., Chico, B., Simancas, J., Díaz, I., & Morcillo, M. (2017). Marine atmospheric corrosion of carbon steel: A review. Materials, 10(4), 406. doi:10.3390/ma10040406.

Castañeda, A., Valdés, C., & Corvo, F. (2018). Atmospheric corrosion study in a harbor located in a tropical island. Materials and Corrosion, 69(10), 1462–1477. doi:10.1002/maco.201810161.

Guo, L., Street, S. R., Mohammed-Ali, H. B., Ghahari, M., Mi, N., Glanvill, S., Du Plessis, A., Reinhard, C., Rayment, T., & Davenport, A. J. (2019). The effect of relative humidity change on atmospheric pitting corrosion of stainless steel 304L. Corrosion Science, 150(6), 110–120. doi:10.1016/j.corsci.2019.01.033.

Liu, Y., Liu, M., Lu, X., & Wang, Z. (2022). Effect of temperature and ultraviolet radiation on corrosion behavior of carbon steel in high humidity tropical marine atmosphere. Materials Chemistry and Physics, 277(1), 124962. doi:10.1016/j.matchemphys.2021.124962.

Stefanoni, M., Angst, U., & Elsener, B. (2018). Corrosion rate of carbon steel in carbonated concrete – A critical review. Cement and Concrete Research, 103(1), 35–48. doi:10.1016/j.cemconres.2017.10.007.

Gu, X.-L., Dong, Z., Yuan, Q., & Zhang, W.-P. (2020). Corrosion of Stirrups under Different Relative Humidity Conditions in Concrete Exposed to Chloride Environment. Journal of Materials in Civil Engineering, 32(1), 4019329. doi:10.1061/(asce)mt.1943-5533.0003001.

Pacheco, A. M. G., & Ferreira, M. G. S. (1994). An investigation of the dependence of atmospheric corrosion rate on temperature using printed-circuit iron cells. Corrosion Science, 36(5), 797–813. doi:10.1016/0010-938X(94)90171-6.

Almarshad, A. I., & Syed, S. (2008). Atmospheric corrosion of galvanized steel and aluminium in marine and marine-industrial environments of Saudi Arabia. Materials and Corrosion, 59(1), 46–51. doi:10.1002/maco.200704075.

Cole, I. S., & Paterson, D. A. (2010). Possible effects of climate change on atmospheric corrosion in Australia. Corrosion Engineering Science and Technology, 45(1), 19–26. doi:10.1179/147842209X12579401586483.

Alcántara, J., Chico, B., Díaz, I., de la Fuente, D., & Morcillo, M. (2015). Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel. Corrosion Science, 97, 74–88. doi:10.1016/j.corsci.2015.04.015.

McKay, W. A., Garland, J. A., Livesley, D., Halliwell, C. M., & Walker, M. I. (1994). The characteristics of the shore-line sea spray aerosol and the landward transfer of radionuclides discharged to coastal sea water. Atmospheric Environment, 28(20), 3299–3309. doi:10.1016/1352-2310(94)00156-F.

Cole, I. S., Ganther, W. D., Paterson, D. A., King, G. A., Furman, S. A., & Lau, D. (2003). Holistic model for atmospheric corrosion Part 2 - Experimental measurement of deposition of marine salts in a number of long-range studies. Corrosion Engineering Science and Technology, 38(4), 259–266. doi:10.1179/147842203225008886.

Cole, I., & Corrigan, P. (2009). Service life prediction of materials. Technology, design and process innovation in the built environment, Spon Press, London, United Kingdom.

WorldClim. (2024). Downscaling Future and Past Climate Data from GCMs. WorldClim. Available online: https://www.worldclim.org/data/downscaling.html (accessed on July 2024).

Iannuzzi, M., & Frankel, G. S. (2022). The carbon footprint of steel corrosion. NPJ Materials Degradation, 6(1), 101. doi:10.1038/s41529-022-00318-1.

Ozkan, I. F., Ebrahimi, N., Zhang, J., Markovinovic, D., & Shirkhani, H. (2023). Atmospheric Corrosion of Steel Infrastructure in Canada Under Climate Change. Corrosion, 79(9), 1064–1078. doi:10.5006/4296.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-016

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Mohammad Firas Tamimi, Ali Shehadeh, Odey Alshboul, Khaled Amaeyrh, Ghaidaa Taani, Samer Firas, Mohammad Faris, Eman Hazaimeh, Amani AL-Zboun, Motasem Nawafleh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message