Adaptive Seismic Upgrading of Isolated Bridges with C-Gapped Devices: Model Testing

Jelena Ristic, Danilo Ristic, Ragip Behrami, Viktor Hristovski

Abstract


The seismic safety margins of seismically isolated bridges have not been thoroughly studied or comprehended due to a lack of actual on-site data observations. This study introduces a newly validated method for the efficient seismic protection of bridges that may be exposed to extremely strong, multidirectional near-source and critical far-source earthquakes. The isolated system was improved by incorporating innovative adaptive horizontal C-multigapped (HC-MG) energy dissipation devices to overcome the safety limitations associated with solely using isolated bridges under seismic loads. The newly developed adaptive C-gapped (ACG) bridge system was systematically validated through extensive experimental seismic tests on bridge models and additional analytical studies. The new ACG bridge system represents an advanced technical solution that integrates the benefits of seismic isolation and energy dissipation. The seismic isolation system for the large-scale ACG bridge prototype was designed using double spherical rolling seismic bearings (DSRSB). The seismic performance of the system was enhanced with adaptive HC-MG energy dissipation devices. The improved seismic performance of the system was demonstrated through extensive seismic shaking-table tests on the ACG bridge prototype, simulating selected seismic inputs characteristic of typical near- and far-source earthquakes.

 

Doi: 10.28991/CEJ-2024-010-09-01

Full Text: PDF


Keywords


Bridge; Seismic Isolation; Energy Dissipation; Seismic Shaking Table; Seismic Safety; Seismic Performance.

References


Kelly, J. M. (1986). Aseismic base isolation: review and bibliography. Soil Dynamics and Earthquake Engineering, 5(4), 202–216. doi:10.1016/0267-7261(86)90006-0.

M.C. Kunde, & R.S. Jangid. (2003). Seismic behavior of isolated bridges: A-state-of-the-art review. Electronic Journal of Structural Engineering, 3, 140–170. doi:10.56748/ejse.335.

Turkington, D. H., Carr, A. J., Cooke, N., & Moss, P. J. (1989). Seismic Design of Bridges on Lead‐Rubber Bearings. Journal of Structural Engineering, 115(12), 3000–3016. doi:10.1061/(asce)0733-9445(1989)115:12(3000).

Robinson, W. H. (1982). Lead‐rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics, 10(4), 593–604. doi:10.1002/eqe.4290100408.

Dolce, M., Cardone, D., & Palermo, G. (2007). Seismic isolation of bridges using isolation systems based on flat sliding bearings. Bulletin of Earthquake Engineering, 5(4), 491–509. doi:10.1007/s10518-007-9044-3.

Iemura, H., Taghikhany, T., & Jain, S. K. (2007). Optimum design of resilient sliding isolation system for seismic protection of equipments. Bulletin of Earthquake Engineering, 5(1), 85–103. doi:10.1007/s10518-006-9010-5.

Kartoum, A., Constantinou, M. C., & Reinhorn, A. M. (1992). Sliding isolation system for bridges: analytical study. Earthquake Spectra, 8(3), 345–372. doi:10.1193/1.1585685.

Wang, B., Han, Q., & Du, X. (2016). Seismic response analysis of isolated bridge with friction pendulum bearings. Tumu Gongcheng Xuebao/China Civil Engineering Journal, 49, 85–90. doi:10.1002/(sici)1096-9845(199810)27:10.

Zayas, V. A., Low, S. S., & Mahin, S. A. (1990). A Simple Pendulum Technique for Achieving Seismic Isolation. Earthquake Spectra, 6(2), 317–333. doi:10.1193/1.1585573.

Constantinou, M. C., Kartoum, A., Reinhorn, A. M., & Bradford, P. (1992). Sliding isolation system for bridges: experimental study. Earthquake Spectra, 8(3), 321–344. doi:10.1193/1.1585684.

Xiang, N., Yang, H., & Li, J. (2019). Performance of an isolated simply supported bridge crossing fault rupture: Shake table test. Earthquake and Structures, 16(6), 665–677. doi:10.12989/eas.2019.16.6.665.

Skinner, R. I., Kelly, J. M., & Heine, A. J. (1974). Hysteretic dampers for earthquake‐resistant structures. Earthquake Engineering & Structural Dynamics, 3(3), 287–296. doi:10.1002/eqe.4290030307.

Guan, Z., Li, J., & Xu, Y. (2010). Performance Test of Energy Dissipation Bearing and Its Application in Seismic Control of a Long-Span Bridge. Journal of Bridge Engineering, 15(6), 622–630. doi:10.1061/(asce)be.1943-5592.0000099.

Javanmardi, A., Ibrahim, Z., Ghaedi, K., Benisi Ghadim, H., & Hanif, M. U. (2020). State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation. Archives of Computational Methods in Engineering, 27(2), 455–478. doi:10.1007/s11831-019-09329-9.

Ene, D., Yamada, S., Jiao, Y., Kishiki, S., & Konishi, Y. (2017). Reliability of U-shaped steel dampers used in base-isolated structures subjected to biaxial excitation. Earthquake Engineering and Structural Dynamics, 46(4), 621–639. doi:10.1002/eqe.2806.

Oh, S. H., Song, S. H., Lee, S. H., & Kim, H. J. (2013). Experimental study of seismic performance of base-isolated frames with U-shaped hysteretic energy-dissipating devices. Engineering Structures, 56, 2014–2027. doi:10.1016/j.engstruct.2013.08.011.

Jiao, Y., Kishiki, S., Yamada, S., Ene, D., Konishi, Y., Hoashi, Y., & Terashima, M. (2015). Low cyclic fatigue and hysteretic behavior of U-shaped steel dampers for seismically isolated buildings under dynamic cyclic loadings. Earthquake Engineering and Structural Dynamics, 44(10), 1523–1538. doi:10.1002/eqe.2533.

Bajaj, M., & Agrawal, P. (2023). A State-of-the-Art Review on Metallic Dampers Based on Different Yielding Mechanism. Lecture Notes in Civil Engineering, 329 LNCE, 569–586. doi:10.1007/978-981-99-1608-5_41.

Zhang, C., Yu, T., Wang, B., Huang, W., Zhong, G., & Zhao, F. (2024). Experimental and numerical investigations of steel U-shaped dampers under vertical loadings for seismic mitigation. Soil Dynamics and Earthquake Engineering, 179, 108571. doi:10.1016/j.soildyn.2024.108571.

Ghaedi, K., Ibrahim, Z., & Javanmardi, A. (2018). A new metallic bar damper device for seismic energy dissipation of civil structures. IOP Conference Series: Materials Science and Engineering, 431(12), 122009. doi:10.1088/1757-899X/431/12/122009.

Tyler, R. G. (1978). Tapered Steel Energy Dissipators for Earthquake Resistant Structures. Bulletin of the New Zealand National Society for Earthquake Engineering, 11(4), 282–294. doi:10.5459/bnzsee.11.4.282-294.

Briones, B., & de la Llera, J. C. (2014). Analysis, design and testing of an hourglass-shaped copper energy dissipation device. Engineering Structures, 79, 309–321. doi:10.1016/j.engstruct.2014.07.006.

Sepúlveda, J., Boroschek, R., Herrera, R., Moroni, O., & Sarrazin, M. (2008). Steel beam-column connection using copper-based shape memory alloy dampers. Journal of Constructional Steel Research, 64(4), 429–435. doi:10.1016/j.jcsr.2007.09.002.

Ghandil, M., Riahi, H. T., & Behnamfar, F. (2022). Introduction of a new metallic-yielding pistonic damper for seismic control of structures. Journal of Constructional Steel Research, 194. doi:10.1016/j.jcsr.2022.107299.

Jankowski, R., Seleemah, A., El-Khoriby, S., & Elwardany, H. (2015). Experimental study on pounding between structures during damaging earthquakes. Key Engineering Materials, 627, 249–252. doi:10.4028/www.scientific.net/KEM.627.249.

Tubaldi, E., Mitoulis, S. A., Ahmadi, H., & Muhr, A. (2016). A parametric study on the axial behaviour of elastomeric isolators in multi-span bridges subjected to horizontal seismic excitations. Bulletin of Earthquake Engineering, 14(4), 1285–1310. doi:10.1007/s10518-016-9876-9.

Serino, G., & Occhiuzzi, A. (2003). A semi-active oleodynamic damper for earthquake control. Part 1: Design, manufacturing and experimental analysis of the device. Bulletin of Earthquake Engineering, 1(2), 241–268. doi:10.1023/A:1026336809041.

Kataria, N. P., & Jangid, R. S. (2016). Seismic protection of the horizontally curved bridge with semi-active variable stiffness damper and isolation system. Advances in Structural Engineering, 19(7), 1103–1117. doi:10.1177/1369433216634477.

Mayes, R. L., Buckle, I. G., Kelly, T. E., & Jones, L. R. (1992). AASHTO Seismic Isolation Design Requirements for Highway Bridges. Journal of Structural Engineering, 118(1), 284–304. doi:10.1061/(asce)0733-9445(1992)118:1(284).

Unjoh, S., & Ohsumi, M. (1998). Earthquake Response Characteristics of Super-Multi-Span Continuous MEnshin (Seismic Isolation) Bridges and Seismic Design. Journal of Earthquake Technology, 35, 95–104.

Lee Marsh, M., Buckle, I. G., & Kavazanjian, E. (2014). LRFD Seismic Analysis and Design of Bridges - Reference Manual (Issue FHWA-NHI-15-004). National Highway Institute, U.S. Department of Transportation, New Jersey, United States.

Candeias, P., Campos Costa, A., & Coelho, E. (2004). Shaking table tests of 1:3 reduced scale models of four story unreinforced masonry buildings. 13th World Conference on Earthquake Engineering, August 2004, 2199.

Ristic, D., & Ristic, J. (2012). New integrated 2G3 response modification method for seismic upgrading of new and existing bridges. 15th World Conference on Earthquake Engineering (WCEE), Lisbon, Portugal.

Ristic, J. (2016). Modern technology for seismic protection of bridges with application of new seismic response modification system. Doctoral Dissertation, University Ss. Cyril and Methodius, Skopje, Macedonia.

Tian, L., Fu, Z., Pan, H., Ma, R., & Liu, Y. (2019). Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes. Earthquake and Structures, 16(5), 513–522. doi:10.12989/eas.2019.16.5.513.

Misini, M., Ristić, J., Ristić, D., Guri, Z., & Pllana, N. (2019). Seismic upgrading of isolated bridges with SF-ED devices: Analytical study validated by shaking table testing. Gradjevinar, 71(4), 255–272. doi:10.14256/JCE.2274.2017.

Ristic, J., Misini, M., Ristic, D., Guri, Z., & Pllana, N. (2018). Seismic upgrading of bridges isolated with SF-ED devices: Large-scale model testing on shaking table. Journal of the Croatian Association of Civil Engineers, 70(6), 463–485. doi:10.14256/jce.2147.2017.

Ristic, J., Brujic, Z., Ristic, D., Folic, R., & Boskovic, M. (2021). Upgrading of isolated bridges with space-bar energy-dissipation devices: Shaking table test. Advances in Structural Engineering, 24(13), 2948–2965. doi:10.1177/13694332211013918.

Zlatkov, D., Ristić, D., Zorić, A., Ristić, J., Mladenović, B., Petrović, Ž., & Trajković-Milenković, M. (2022). Experimental and Numerical Study of Energy Dissipation Components of a New Metallic Damper Device. Journal of Vibration Engineering and Technologies, 10(5), 1809–1829. doi:10.1007/s42417-022-00485-0.

Behrami, R., Ristic, J., Ristic, D., & Hristovski, V. (2021). The New Uniform Vf -Energy Dissipation Device: Refined Modelling. World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures Proceedings, 1140-1151. doi:10.37153/2686-7974-2019-16-1140-1151.

UNCRD. (1995). Comprehensive Study of the Great Hanshin Earthquake. UNCRD Research Report Series, 12, 74–75.

Lin, C. C. J., Hung, H. H., Liu, K. Y., & Chai, J. F. (2010). Reconnaissance observation on bridge damage caused by the 2008 Wenchuan (China) earthquake. Earthquake Spectra, 26(4), 1057–1083. doi:10.1193/1.3479947.

Guo, W., Gao, X., Hu, P., Hu, Y., Zhai, Z., Bu, D., & Jiang, L. (2020). Seismic damage features of high-speed railway simply supported bridge–track system under near-fault earthquake. Advances in Structural Engineering, 23(8), 1573–1586. doi:10.1177/1369433219896166.

UNCRD. (1995). Comprehensive study of the great Hanshin earthquake. UNCRD research report series No. 12. United Nations Centre for Regional Development (UNCRD), Nagoya, Japan.

Yuan, W., Feng, R., & Dang, X. (2018). Typical earthquake damage and seismic isolation technology for bridges subjected to near-fault ground motions. Proceedings - 2018 International Conference on Engineering Simulation and Intelligent Control, ESAIC 2018, 314–318. doi:10.1109/ESAIC.2018.00079.

Mya Nan Aye, Kasai, A., & Shigeishi, M. (2018). An Investigation of Damage Mechanism Induced by Earthquake in a Plate Girder Bridge Based on Seismic Response Analysis: Case Study of Tawarayama Bridge under the 2016 Kumamoto Earthquake. Advances in Civil Engineering, 2018, 9293623. doi:10.1155/2018/9293623.

Wang, S., Yuan, Y., Tan, P., Li, Y., Zheng, W., & Zhang, D. (2024). Experimental study and numerical model of a new passive adaptive isolation bearing. Engineering Structures, 308, 118044. doi:10.1016/j.engstruct.2024.118044.

Zhou, W., Huang, C., Li, X., Liu, D., Zhang, Y., & Fang, S. (2024). Analysis of shock absorption performance of a new staggered story isolation structure under far-field long-period ground motions. Soil Dynamics and Earthquake Engineering, 177. doi:10.1016/j.soildyn.2023.108411.

Lee, G. C., Kitane, Y., & Buckle, I. G. (2001). Literature Review of the Observed Performance of Seismically Isolated Bridges. Research Progress and Accomplishments: Multidisciplinary Center for Earthquake Engineering Research, 51–62.

Ghasemi, H., Cooper, J. D., Imbsen, R., Piskin, H., Inal, F., & Tiras, A. (1999). The November 1999 Duzce Earthquake: Post-Earthquake Investigation of the Structures on the TEM. Publication, FHWARD-00-146, 1–26.

Erdik, M. (2001). Report on 1999 Kocaeli and Düzce (Turkey) Earthquakes. Structural Control for Civil and Infrastructure Engineering, Proceedings of the 3rd International Workshop on Structural Control, 149–186. doi:10.1142/9789812811707_0018.

Li, X., & Shi, Y. (2019). Seismic Design of Bridges against Near-Fault Ground Motions Using Combined Seismic Isolation and Restraining Systems of LRBs and CDRs. Shock and Vibration, 2019, 4067915. doi:10.1155/2019/4067915.

Ristic, D. (1988). Nonlinear behavior and stress-strain based modeling of reinforced concrete structures under earthquake induced bending and varying axial loads. School of Civil Engineering, Kyoto University, Kyoto, Japan.

Wan, W., Bo, J., Qi, W., Peng, D., Li, Q., & Duan, Y. (2023). Analysis of Peak Ground Acceleration Attenuation Characteristics in the Pazarcik Earthquake, Türkiye. Applied Sciences (Switzerland), 13(20), 11436. doi:10.3390/app132011436.

ANSYS (2017). ANSYS Mechanical: Finite Element Analysis (FEA) software, ANSYS, Inc., Pennsylvania, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-09-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ragip Sherif Behrami

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message