Comparative Study of UPV and IE Results on Concrete Cores from Existing Structures
Downloads
Doi: 10.28991/CEJ-2024-010-09-03
Full Text: PDF
Downloads
[2] Panzera, T. H., Christoforo, A. L., de Paiva Cota, F., Ribeiro Borges, P. H., & Bowen, C. R. (2011). Ultrasonic Pulse Velocity Evaluation of Cementitious Materials. Advances in Composite Materials - Analysis of Natural and Man-Made Materials. Intechopen, London, United Kingdom. doi:10.5772/17167.
[3] ASTM-E1876-22. (2000). Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
[4] Hobbs, B., & Tchoketch Kebir, M. (2007). Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings. Forensic Science International, 167(2–3), 167–172. doi:10.1016/j.forsciint.2006.06.065.
[5] Logothetis, L. (1979). A contribution to the in-situ assessment of concrete strength by means of combined non-destructive methods. Ph.D. Dissertation, National Technical University, Athens, Greece. doi:10.12681/eadd/2558. (in Greek)
[6] Trezos, K., Papakyriakopoulos, P., & Spanos, C. (1993). Calibration of the Rebound Hammer and Pulse Velocity Methods through in situ concrete cores and standard cube specimens. Technical Chamber of Greece, Agrinio, Greece.
[7] Turgut, P. (2004). Evaluation of the ultrasonic pulse velocity data coming on the field. Fourth International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components, 573–578.
[8] Trtnik, G., KavÄiÄ, F., & Turk, G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics, 49(1), 53–60. doi:10.1016/j.ultras.2008.05.001.
[9] Qasrawi, H. Y. (2000). Concrete strength by combined nondestructive methods simply and reliably predicted. Cement and Concrete Research, 30(5), 739–746. doi:10.1016/S0008-8846(00)00226-X.
[10] Kheder, G. F. (1999). Two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Materials and Structures/Materiaux et Constructions, 32(6), 410–417. doi:10.1007/bf02482712.
[11] Nash't, I. H., Saeed, H. A., & Sadoon, A. A. (2005). Finding an Unified Relationship between Crushing Strength of Concrete and Non-destructive Tests. 3rd MENDT - Middle East Nondestructive Testing Conference & Exhibition, 27-30 November, 7.
[12] Siorikis, V. G., Antonopoulos, C. P., Pelekis, P., Christovasili, K., & Hatzigeorgiou, G. D. (2020). Numerical and experimental evaluation of sonic resonance against ultrasonic pulse velocity and compression tests on concrete core samples. Vibroengineering Procedia, 30, 168–173. doi:10.21595/vp.2020.21328.
[13] Medina, R., & Bayón, A. (2010). Elastic constants of a plate from impact-echo resonance and Rayleigh wave velocity. Journal of Sound and Vibration, 329(11), 2114–2126. doi:10.1016/j.jsv.2009.12.026.
[14] Nieves, F. J., Gascón, F., & Bayón, A. (2000). Precise and direct determination of the elastic constants of a cylinder with a length equal to its diameter. Review of Scientific Instruments, 71(6), 2433–2439. doi:10.1063/1.1150632.
[15] Nieves, F. J., Gascón, F., & Bayón, A. (2003). Measurement of the dynamic elastic constants of short isotropic cylinders. Journal of Sound and Vibration, 265(5), 917–933. doi:10.1016/S0022-460X(02)01563-8.
[16] Sansalone, M. (1997). Impact-echo: The complete story. ACI Structural Journal, 94(6), 777–786. doi:10.14359/9737.
[17] Lee, K.-M., Kim, D.-S., & Kim, J.-S. (1997). Determination of dynamic Young's modulus of concrete at early ages by impact resonance test. KSCE Journal of Civil Engineering, 1(1), 11–18. doi:10.1007/bf02830459.
[18] ASTM C215. (2008). Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. American Society for Testing and Materials (ASTM), Pennsylvania, United States. doi:10.1520/C0215-14.2.
[19] Pandum, J., Hashimoto, K., Sugiyama, T., & Yodsudjai, W. (2024). Impact-Echo for Crack Detection in Concrete with Artificial Intelligence based on Supervised Deep Learning. e-Journal of Nondestructive Testing, 29(6), 1-12. doi:10.58286/29925.
[20] Malone, C., Sun, H., & Zhu, J. (2023). Nonlinear Impact-Echo Test for Quantitative Evaluation of ASR Damage in Concrete. Journal of Nondestructive Evaluation, 42(4), 93. doi:10.1007/s10921-023-01003-2.
[21] Schubert, F., & Köhler, B. (2008). Ten lectures on impact-echo. Journal of Nondestructive Evaluation, 27(1–3), 5–21. doi:10.1007/s10921-008-0036-2.
[22] Prakash, S. (1981). Soil Dynamics. McGraw-Hill, New York, United States.
[23] Dethof, F., & Keßler, S. (2024). Explaining impact echo geometry effects using modal analysis theory and numerical simulations. NDT and E International, 143. doi:10.1016/j.ndteint.2023.103035.
[24] ASTM C1383-15. (2022). Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
[25] LNG. F. (1920). A Treatise on the Mathematical Theory of Elasticity. Nature 105, 511–512. doi:10.1038/105511a0.
[26] Kolluru, S. V., Popovics, J. S., & Shah, S. P. (2000). Determining elastic properties of concrete using vibrational resonance frequencies of standard test cylinders. Cement, Concrete and Aggregates, 22(2), 81–89. doi:10.1520/cca10467j.
[27] Yao, F., Zhuang, J., & Abulikemu, A. (2022). Shape coefficient of impact-echo for small-size short cylinder/circular tube structures. Materialpruefung/Materials Testing, 64(4), 574–583. doi:10.1515/mt-2021-2043.
[28] Siorikis, V. G., Antonopoulos, C. P., Pelekis P., Hatzigeorgiou, G. D. (2022). Shape correction factors for impact-echo method on short cylinders-A numerical and experimental study. 13th HSTAM International Congress on Mechanics (24-27 August), Patras, Greece.
[29] Wang, J. J., Chang, T. P., Chen, B. T., & Wang, H. (2012). Determination of Poissons ratio of solid circular rods by impact-echo method. Journal of Sound and Vibration, 331(5), 1059–1067. doi:10.1016/j.jsv.2011.10.030.
[30] Pelekis P., Siorikis, V. G., Antonopoulos, C. P., Hatzigeorgiou, G. D. (2022). Determination of Dynamic Elastic Properties on Short Cylinders Using Impact-Echo Method-A Numerical Study. 13th HSTAM International Congress on Mechanics (24-27 August), Patras, Greece.
[31] Greek Ministry of Environment Physical Planning and Public Works. (1997). Assessment of concrete's strength classification of existing structures. Accessed. Available online: http://fakisc.weebly.com/uploads/3/2/7/6/3276490/ΕγκÏκλιος_7_28-3-1997.pdf (accessed on August 2024).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.