Optimizing Mortar Mixtures with Basalt Rubble: Impacts on Compressive Strength and Chloride Penetration

Authors

  • Sumrerng Rukzon Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170,
  • Suthon Rungruang Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170,
  • Ronnakorn Thepwong Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170,
  • Udomvit Chaisakulkiet Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Rattanakosin, Nakhon Pathom 73170,
  • Prinya Chindaprasirt 2) Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand. 3) Academy of Science, Royal Society of Thailand, Dusit, Bangkok 10300, Thailand.

DOI:

https://doi.org/10.28991/CEJ-2024-010-12-013

Keywords:

Basalt Rubble, Construction Materials, Chloride Penetration, Strength.

Abstract

This research aims to establish a theoretical framework for developing binders from waste materials to reduce cement use in mortar production. It specifically examines the potential of ground basalt rubble (BS) as a supplementary binding material for partially replacing Portland cement Type 1 (OPC) in mortar mixtures. Various substitution ratios of BS, specifically 0%, 10%, 20%, 30%, and 40% by binder weight, were tested while maintaining a constant water-to-binder ratio (W/B) of 0.45. Superplasticizers (SP) were utilized to ensure consistent workability and flow of the mixtures. The SEM-EDS analysis was conducted to examine the microstructure of the cement paste, confirming the presence of calcium silicate hydrate (C-S-H) phases resulting from the pozzolanic reactions of BS. The findings showed that, at the 7-day test, replacing cement with 10% and 20% basalt rubble (BS) by weight of the binder yielded compressive strengths of 97% and 92% compared to the control (CT) mortar. In contrast, replacements of 30% and 40% BS resulted in compressive strengths of 72% and 60% of the CT mortar, respectively. Results from 28-day tests showed that replacing 10% of OPC with BS not only increased the compressive strength but also significantly decreased chloride penetration compared to the control mortar (CT). This enhancement suggests that BS can effectively replace 10%-20% of cement, with the compressive strength of the mortar ranging from 92% to 107% of that of the control. The findings accentuate the potential of using industrial by-products such as ground basalt rubble to reduce waste, alleviate environmental impacts, and promote the development of sustainable construction materials.

 

Doi: 10.28991/CEJ-2024-010-12-013

Full Text: PDF

References

[1] Looney, T., Leggs, M., Volz, J., & Floyd, R. (2022). Durability and corrosion resistance of ultra-high performance concretes for repair. Construction and Building Materials, 345, 128238. doi:10.1016/j.conbuildmat.2022.128238.
[2] Rukzon, S., & Chindaprasirt, P. (2018). Strength, chloride penetration and corrosion resistance of ternary blends of portland cement self-compacting concrete containing bagasse ash and rice husk-bark ash. Chiang Mai Journal of Science, 45(4), 1863–1874.
[3] Fu, H., Pang, B., Wang, P., Yang, C., Liu, Y., Du, Z., & Ji, H. (2024). Microstructure and durability of rapid repair mortar with self-emulsifying waterborne epoxy polymer. Materials Today Communications, 40, 109375. doi:10.1016/j.mtcomm.2024.109375.
[4] Chindaprasirt, P., Chotetanorm, C., & Rukzon, S. (2011). Use of Palm Oil Fuel Ash to Improve Chloride and Corrosion Resistance of High-Strength and High-Workability Concrete. Journal of Materials in Civil Engineering, 23(4), 499–503. doi:10.1061/(asce)mt.1943-5533.0000187.
[5] Rukzon, S., & Chindaprasirt, P. (2013). Strength, porosity, and chloride resistance of mortar using the combination of two kinds of pozzolanic materials. International Journal of Minerals, Metallurgy and Materials, 20(8), 808–814. doi:10.1007/s12613-013-0800-x.
[6] El-Didamony, H., Helmy, I. M., Osman, R. M., & Habboud, A. M. (2015). Basalt as Pozzolana and filler in ordinary Portland cement. American Journal of Engineering and Applied Sciences, 8(2), 263–274. doi:10.3844/ajeassp.2015.263.274.
[7] Day, K. W. (2021). Properties of concrete. In Concrete Mix Design, Quality Control and Specification. Longman Group Limited, Malaysia. doi:10.4324/9780203967874-11.
[8] Pereira, V. M., Geraldo, R. H., Baldusco, R., & Camarini, G. (2022). Porcelain waste from electrical insulators in self-leveling mortar: Materials characterization and properties. Journal of Building Engineering, 61. doi:10.1016/j.jobe.2022.105297.
[9] Becerra-Duitama, J. A., & Rojas-Avellaneda, D. (2022). Pozzolans: A review. Engineering and Applied Science Research, 49(4), 495-504.
[10] Saudi, H. A., Maha, F. A. A., Ahmaed, M. M., & Algendy, A. A. (2024). A Framework for Studying the Possibility of Using Basalt Cement as a Cladding Material for Indoor Spaces. Information Sciences Letters, 13(2), 377–386. doi:10.18576/isl/130215.
[11] Rashad, A. M., Mohamed, R. A. E., Zeedan, S. R., & El-Gamal, A. A. (2024). Basalt powder as a promising candidate material for improving the properties of fly ash geopolymer cement. Construction and Building Materials, 435, 136805. doi:10.1016/j.conbuildmat.2024.136805.
[12] Abo Hashem, I. A., Gaber, G. A., Ahmed, A. S. I., & Abdel Ghany, N. A. (2024). Assessment of blended cement containing waste basalt powder: physicomechanical and electrochemical impedance spectroscopy investigations. Discover Applied Sciences, 6(8), 380. doi:10.1007/s42452-024-06075-x.
[13] Çelikten, S., & Baran, B. (2024). A comprehensive assessment of mechanical and environmental properties of waste basalt powder-modified high strength mortars exposed to high temperature. Next Materials, 5, 100273. doi:10.1016/j.nxmate.2024.100273.
[14] Ye, F., Feng, Q., Qiao, H., Zhu, X., Su, L., Xue, C., Cao, H., & Zhang, L. (2024). Study on multi-objective matching ratio optimization and strength development law of basalt stone powder composite cementitious materials. Construction and Building Materials, 417, 135088. doi:10.1016/j.conbuildmat.2024.135088.
[15] ASTM C204-18e1. (2023). Test Method for Fineness of Portland Cement by Air Permeability Apparatus. ASTM International, Pennsylvania, United States. doi:10.1520/C0204-18E01.
[16] ASTM C618-00. (2017). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-00.
[17] ASTM C230/C230M-20. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0230_C0230M-20.
[18] ASTM C109/C109M-20. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.
[19] Otsuki, N., Nagataki, S., & Nakashita, K. (1993). Evaluation of the AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials. Construction and Building Materials, 7(4), 195–201. doi:10.1016/0950-0618(93)90002-T.
[20] Tang, L., & Nilsson, L. O. (1995). A discussion of the paper "calculation of chloride diffusivity in concrete from migration experiments, in non-steady-state conditions” by C. Andrade, D. Cervigón, A. Recuero and O. Rí­o. Cement and Concrete Research, 25(5), 1133–1137. doi:10.1016/0008-8846(95)94178-U.
[21] Chindaprasirt, P., & Rukzon, S. (2015). Strength and chloride resistance of the blended Portland cement mortar containing rice husk ash and ground river sand. Materials and Structures/Materiaux et Constructions, 48(11), 3771–3777. doi:10.1617/s11527-014-0438-9.
[22] Pachideh, G., Gholhaki, M., & Ketabdari, H. (2020). Effect of pozzolanic wastes on mechanical properties, durability and microstructure of the cementitious mortars. Journal of Building Engineering, 29, 101178. doi:10.1016/j.jobe.2020.101178.
[23] Pekmezci, B. Y., & Akyüz, S. (2004). Optimum usage of a natural pozzolan for the maximum compressive strength of concrete. Cement and Concrete Research, 34(12), 2175–2179. doi:10.1016/j.cemconres.2004.02.008.
[24] Moawad, M. S. M., Ragab, A. E.-R., & Younis, S. (2023). Effect of the Natural Pozzolanic Basalt on High Strength Concrete. Mansoura Engineering Journal, 48(2), 1 16. doi:10.58491/2735-4202.3063.
[25] Yu, L., Zhou, S., & Dong, J. (2020). Investigation into Pozzolanic Activity Component of Basalt and Pumice. Journal of Materials in Civil Engineering, 32(6), 4020135. doi:10.1061/(asce)mt.1943-5533.0003180.
[26] Moawad, M. S., Younis, S., & Ragab, A. E. R. (2021). Assessment of the optimal level of basalt pozzolana blended cement replacement against concrete performance. Journal of Engineering and Applied Science, 68(1). doi:10.1186/s44147-021-00046-4.
[27] El-Desoky, H. M., El-Shafey, R. E., & Omar, A. A. (2024). Effect of partially replacement of ordinary Portland clinker by basaltic rocks on the properties of blended cement. HBRC Journal, 20(1), 55–70. doi:10.1080/16874048.2023.2298765.
[28] Khan, K., Amin, M. N., Saleem, M. U., Qureshi, H. J., Al-Faiad, M. A., & Qadir, M. G. (2019). Effect of fineness of basaltic volcanic ash on pozzolanic reactivity, ASR expansion and drying shrinkage of blended cement mortars. Materials, 12(16), 2603. doi:10.3390/ma12162603.
[29] Ponzi, G. G. D., Santos, V. H. J. M. dos, Martel, R. B., Pontin, D., Stepanha, A. S. de G. e., Schütz, M. K., Menezes, S. C., Einloft, S. M. O., & Vecchia, F. D. (2021). Basalt powder as a supplementary cementitious material in cement paste for CCS wells: chemical and mechanical resistance of cement formulations for CO2 geological storage sites. International Journal of Greenhouse Gas Control, 109, 103337. doi:10.1016/j.ijggc.2021.103337.
[30] Chand, G. (2021). Microstructural study of sustainable cements produced from industrial by-products, natural minerals and agricultural wastes: A critical review on engineering properties. Cleaner Engineering and Technology, 4, 100224. doi:10.1016/j.clet.2021.100224.

Downloads

Published

2024-12-01

Issue

Section

Research Articles