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Abstract 

Landslides are natural disasters that have resulted in the loss of economies and lives over the years. The landslides caused 

by the 2005 Muzaffarabad earthquake heavily impacted the area, and slopes in the region have become unstable. This 

research was carried out to find out which areas, as in Muzaffarabad district, are sensitive to landslides and to define the 

relationship between landslides and geo-environmental factors using three tree-based classifiers, namely, Extreme Gradient 

Boosting (XGBoost), Random Forest (RF), and k-Nearest Neighbors (KNN). These machine learning models are 

innovative and can assess environmental problems and hazards for any given area on a regional scale. The research consists 

of three steps: Firstly, for training and validation, 94 historical landslides were randomly split into a proportion of 7/3. 

Secondly, topographical and geological data as well as satellite imagery were gathered, analyzed, and built into a spatial 

database using GIS Environment. Nine layers of landslide-conditioning factors were developed, including Aspect, 

Elevation, Slope, NDVI, Curvature, SPI, TWI, Lithology, and Landcover. Finally, the receiver operating characteristic 

(ROC) curve and the area under the ROC curve (AUC) value were used to estimate the model's efficiency. The area under 

the curve values for the RF, XGBoost, and KNN models are 0.895 (89.5%), 0.893 (89.3%), and 0.790 (79.0%), 

respectively. Based on the three machine learning techniques, the innovative outputs show that the performance of the 

Random Forest model has a maximum AUC value of 0.895, and it is more efficient than the other tree-based classifiers. 

Elevation and Slope were determined as the most important factors affecting landslides in this research area. The landslide 

susceptibility maps were classified into four classes: low, moderate, high, and very high susceptibility. The result maps are 

useful for future generalized construction operations, such as selecting and conserving new urban and infrastructural areas. 

Keywords: Landslide Susceptibility Modelling; Proportion; Efficient; Random Forest. 

 

1. Introduction 

Landslides are caused by many natural and human action-induced disruptions to the soil [1-3]. Landslides inflict 

significant economic loss every year, whether caused by natural or human activity [4-6]. The Himalayan Mountain 

Range is vulnerable to frequent and devastating landslides due to robust topography, poor lithology, climate change, 

soil, fragile sloping infrastructure, and active tectonic action. The probability of landslides happening in an area is 
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dependent on ground situations, i.e., the assessment of where landslides may happen [7]. Muzaffarabad is the capital of 

Azad Jammu and Kashmir, Pakistan, and lies in the Himalayan Mountains. In Muzaffarabad, the earthquake also brought 

about significant land losses, namely the landslide of Hattian Bala rock, causing the deaths of 595 people [8, 9]. Since 

the 2005 earthquake in the Kashmir region, various landslide identification, spatial distribution, duration, structural 

landslide tracking, and hazard analysis have been conducted [10, 11]. In North Pakistan, the Kashmir earthquake in 2005 

led to thousands of landslides, killing over 26,000 individuals, with disastrous consequences for infrastructure, directly 

or indirectly [12]. Therefore, landslide susceptibility starts with the inventory of past landslides in the area and the 

collection of optimal causative factors. Then, the landslide and a practical approach for analyzing the association 

between landslide occurrences and influencing factors are needed, leading to the landslide susceptibility map [13]. 

Significant advances in computation power, remote sensing, and GIS have aided in creating Landslide Susceptibility 

Mapping (LSM) over the past two decades. For LSM, a diversity of methods have been proposed, including knowledge-

based approaches such as: 

 Analytical hierarchy [14],  

 Empirical approaches [15],  

 Frequency ratio [16],  

 Entropy index, certitude factor [17,18], 

 Logistic regression analysis [19],  

 Conditional analysis method [20],  

 Machine-learning methods [21], 

 Support vector machine [22],  

 Adaptive neuro-fuzzy inference system [23], 

 Decision trees [24-26],  

 Support vector regression (SVR) [27].  

Landslide susceptibility maps were produced in previous studies by using the following approaches in the research 

area such as:  

 GIS-based LSM [28] 

 Data-Driven approach [29] 

 Weighted overlay method [10]  

It is worth noting that if the size of the evaluation area is relatively small, we can use such models [30, 31] to 

determine the potential hazard for different scenarios. Also, to speed up the simulations, these models can be 

implemented on GPUs [32]. Nonetheless, for a regional assessment, these models still do not have the computational 

power. It is possible when the multivariate regression models, the discriminant analysis, and the machine learning 

models emerge and can provide a useful and reliable solution. Different models generate different evaluation results 

because each model has its own implementation method, benefits, and limitations. Investigators frequently use 

comparative techniques to fill in the gaps [18, 33, 34].  

A revision of the literature reveals that each machine learning model has its weaknesses and strengths and that the 

characteristics of various research areas influence its behavior patterns. As a result, machine learning accesses for LSM 

comparison are highly desirable. We need to explore the excellent deep learning techniques and extend tree-based 

ensemble classifier applications on a regional scale in LSM. Therefore, we investigate Extreme Gradient Boosting, k-

Nearest Neighbors, and Random Forest by tunning the hyper-parameters and verifying and comparing these models for 

LSM with a case study in the Muzaffarabad area. Ensembles are well-known machine learning algorithms that combine 

many base learners to provide more accurate prediction outputs [35]. The ensemble approaches can be classified into 

two categories: boosting and bagging [36].  

On the other hand, ensemble learning approaches are built on sequential or parallel base learners, who can be 

homogenous in boosting and bagging. In recent years, many ensemble learning approaches have been used in LSM to 

overcome the limits of a single machine learning algorithm [37, 38]. To increase the performance of landslide 

susceptibility modelling, most of them mix homogenous ensemble frameworks of boosting and bagging with tree-based 

classifiers. Nine landslide conditioning factors were chosen after the examination of the geo-environmental sitting of 

the research area. A series of statistical measures were used to verify the model's efficiency, including Recall value, 

Accuracy, the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) value.  
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In this article, two main concise contributions are as follows: the first, the study area, Muzaffarabad, being the capital 

of Azad Jammu and Kashmir (Pakistan), and the densely populated area is exposed to the threat of landslides, especially 

after the 2005 earthquake. Therefore, the need to make an accurate Landslide Susceptibility Map for future planning 

using ML algorithms is imperative to minimize this impending threat subsequently. Secondly, to the best of our 

knowledge, there is no publication to investigate and compare the tree-based classifiers by tunning the hyper-parameters 

in the research area for the LSM. The LSM can be used for land-use planning to mitigate risks associated with landslides 

and is valuable for future general planned construction operations, such as selecting and environmental conservation of 

the new urban and infrastructural areas. 

2. Research Methodology 

2.1. Study Area 

The Study area covers 77.45 km2 in Muzaffarabad District, northern Pakistan (Figure 1). Muzaffarabad is situated 

at the convergence of the Jhelum and Neelum River. The 94 landslides were mapped using visual interpretation of 

optical images and field investigations. In the field, some active landslides were captured, shown in Figure 2. The study 

area's key geographical features are valleys, plains, hills, lakes, and rivers. The weather of the region is damp to the 

subtropical highlands. The Elevation ranges between 615 and 2014 meters above sea level. The maximum and minimum 

average temperatures are around 23° and 35°C in the study area for July and 3° and 16° C for January. The average 

rainfall in the region is 1,511 mm/year [39]. The region consists of active tectonics, steep slopes, and delicate geological 

situations. Pre-Cambrian, Cambrian, Paleocene to Eocene, Early Miocene, and Quaternary rocks are exposed from a 

stratigraphic perspective in the investigated area. (Figure 3). A Digital Elevation Model with a resolution of 12.5×12.5 

meters produced is used to create variables (source: http://www.gscloud.cn). The USGS (https://earthexplorer.usgs.gov/) 

given a Landsat-8 satellite image acquired in December 2020. All the data presented is analyzed for output of QGIS 

2.18.16, ArcGIS 10.6, and R-Studio-related variables 

 

Figure 1. Location map of the study area 
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Figure 2. Some active landslides in the field 

 

 

Figure 3. Stratigraphic map of the investigated area 
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2.2. Landslide Susceptibility Mapping 

The workflow is shown in Figure 4. 

 

Figure 4. The workflow of the study 

Nine evaluation parameters are used as landslide predisposing factors, whereas the landslide is the dependent 

variable. A preliminary decision table is created using the circumstances attribute and intention characteristics; the input 

characteristic settings are then used to form the three models. Eventually, landslide susceptibility mapping is performed 

the following fundamental principle of landslide sensitivity mapping: The following measures are as follows: 

 Model unit division: As a model unit in this analysis, the grid unit was used. Remote sensing data and DEM data 

spatial resolution correspond to 12.5 m, and evaluation factors have all been re-evaluated at 12.5 m. 

 Initial decision table: A two-dimensional table was created by a condition attribute that corresponds to 9 evaluation 

factors and a landslide decision attribute (1 represents landslides, 0 represents non-landslides), each line of which 

defines an object, and each column is the object attribute. 

 Two sections have been changed: training (70%) and testing the two-dimensional table (30%). The Training data 

apply to develop the models and to forecast the studies. 

 The evolution of landslide sensitivity: The three models above were used to calculate all model units in the research 

field. To generated landslide prediction maps (LPI), each model unit's prediction values per group have been 

developed. 

 Division of LPI maps: The results acquired using the three algorithms were importing into GIS, and the Janks 

natural breakpoint approach [18] was applied to division landslide susceptibility into four grades [40]: low, 

moderate, high, and very high. 

 Findings are analyzed: The three models have been extensively tested using the ROC curve and the area under the 

ROC curve. 

The landslide susceptibility assessment has described nine variables with highly explained variances as input factors. 

Table 1 displays the input variable names, descriptions, and classification, whereas Figures 5 to 7 show the nine landslide 

factors. 
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Table 1. The factors, description/Extraction, and categorization of input parameters 

Factors Description/Extraction Category 

Slope DEM Topography 

Elevation DEM Topography 

Aspect DEM Topography 

Lithology Different types of rocks Geology 

Land cover Land cover classes Environmental factor 

NDVI Normalized Different Vegetation Index Environmental factor 

TWI DEM Topography 

SPI DEM Hydrology 

Curvature DEM Topography 

 

Figure 5. Landslide Variables used in the investigated area; (a) Elevation (b) Slope (c) Aspect (d) Lithology 
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Figure 6. Landslide Variables used in the investigated area; (e) Landcover (f) NDVI (g) TWI (h) SPI 

2.3. Random Forest 

RF is a commonly used algorithm that is based on the bagging ensemble approach. The RF was selected for an ML 

algorithm for various classification and regression tasks [41]. The RF model is very flexible and fast. The algorithm is 

one of the entire tree learning methods based on CART (Tree of Regression and Classification). The number of bootstrap 

samples is used to balance the number of trees picked. An RF algorithm's key advantage is that it needs minor 

hyperparameter tuning in for accurate results than the other boosting algorithms [42]. Table 2 displays the RF 

hyperparameter ranges and maximized values discovered by grid search. In RF models analysis, some hyper-parameters 

must be tuned, such as: 

 The number of trees to be integrated  

 The maximum depth of the trees  

 The maximum number of features considered at each split 
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Figure 7. Landslide Variable used in the investigated area, (I) Curvature 

Table 2. RF Parameters 

Parameters Values 

ntree 500 

mtry 10 

node size 14 

2.4. Extreme Gradient Boosting 

XGBoost is a scalable endwise tree boosting system that's applied in a variety of machine learning problems. 

XGBoost follows the gradient boosting principle that incorporates all the poor Leaner predictions [43]. Model XGBoost 

needs several model preview parameters to be chosen. Three main user-friendly parameters are required: nrounds 

(maximum number of iterations boosting), colsample_bytree (columns ratios sub-sample when each tree is constructed), 

and subsamples (the training instance subsample ratio); (Table 3). 

Table 3. XGBoost Parameters 

Parameters Values 

nrounds 200 

colsample_bytree 0.75 

Subsample 1 

max_depth 6 

2.5. k-Nearest Neighbor 

k-Nearest Neighbors has been recently used in several fields (e.g., LSM) and is the easiest of all ML algorithms [44, 

45]. The input in KNN consists essentially of the k most similar training illustration in the specified interval. The results 

are a possibility of becoming members; in classified snags, membership possibilities represent the ambiguity of a 

particular object allocated to a specific class [46]. According to [47], In KNN, an entity is identified by its Neighbor's 

majority vote; the entity is allocated to the most general class of its closest Neighbors (k is an optimistic number, 

characteristically minor). If k = 1, the entity is assigned to the next single Neighbor class. 

KNN usually is stated as an instance-based, nonparametric, and "lazy" algorithm. Here, the terms 'lazy learning' 

mention models in which the acquired experience is deferred until an inquiry is posted on the process instead of 

'eagerness learning.' The algorithm oversimplifies the training data previously having investigations [48].  
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The expression 'nonparametric' mentions that the algorithms are not dependent on the dispersion of the data and that 

the models respond to the data independently. For LSM, where landslide distribution usually doesn't suit smooth 

distributions, it is beneficial. Lazy learning, on the other hand, implies that the role is just approx. Domestically, and all 

estimation has been delayed. Consequently, KNN does not learn from training data a discriminatory feature but instead 

stores the training data set. 

2.6. Model Assessment 

The capacity of Landslide Susceptibility Models was tested using two statistical methods in this analysis. Specificity 

and Sensitivity are the percentages of the landslide pixels properly categorized and the proportion of the non-landslide 

pixels adequately classified in the following equations as Sensitivity and specificity [49]; 

Sensitivity of LSM =
TP

TP + TN
 (1) 

Specificity of LSM =
TN

FP + TN
 (2) 

The number of correctly classified pixels is denoted by TP (true positive) and TN (true negative). FP and TP indicate 

the number of incorrectly classified pixels. The ROC curve is used here, the area under ROC, and the Recall value as 

appraisal metrics to determine LSM models' capability based on Sensitivity and specificity. The ROC curve, the output 

of diagnostic signals such as land change, is often measured [47, 48]. Their Sensitivity toward unique characteristics is 

used through the X-axis with different cut-off levels [24]. 

Moreover, the AUC reveals that a model can simulate landslides and non-landslides cells. AUC having value 1 

illustrates an optimum model; an integer 0 corresponds to an informational model [50]. We also addressed the 

applicability of the precise value under unbalanced landslide sample conditions. The accuracy and recall value 

calculation equations are as follows: 

Recall =
TP

TP + TN
 (3) 

Accuracy =
TP + TN

TP + FN + TN + FP
 (4) 

3. Results and Discussion 

3.1. Important Landslide variables 

The selection of predictor variables is one of the essential aspects of landslide susceptibility evaluation and mapping 

[51]. GIS is frequently utilized to extract important variables for susceptibility evaluation from digital elevation models, 

such as Topographic Wetness Index (TWI), curvature, Elevation, aspect, and Slope [10, 52]. This research selected nine 

contributing factors in line with previous literature [29]: Slope, Elevation, Lithology, Curvature, Aspect, TWI, NDVI, 

SPI, and Landcover (Table 1). The R Studio (Window 4.0.3) was used to determine whether the landslide factors were 

significant in this analysis or not.  

The Slope and Elevation were the essential landslide parameters, while the influence rate of aspect was the minimum 

(Figure 8). Therefore, in the research of Dai et al. and Ohlmacher et al. [54, 55], it was found that Elevation and Slope 

were the best predictor variables for estimating the possibility of landslide events. Xiong et al. [53] showed numerous 

geomorphologic factors (e.g., Elevation) as the maximum significant parameters for predicting the LSM. Hong et al. 

[49] developed the LSM using J48 Decision Trees, and the results showed that the slope parameter significance was 

greater than other parameters. Similarly, Dou et al. [54] generated the LSM using advanced random forest and decision 

tree algorithms, and findings showed that the slope variable was the primary cause of landslides. 

Furthermore, this study found that the Muzzafarabad formation was the most prone to landslides, pursued by the 

Slope. Therefore, the results of our LSM corroborated the findings of Riaz et al. [29] at a certain level. Similarly, Torizin 

et al. [55] created the LSM for the Torghar and Mansehra districts of Pakistan. Their LSM was created by combining 

four variables: Landcover, Slope, Lithology, and Distance to the fault. The included variables were similar to the 

contributive variables considered in this study; nevertheless, we developed the LSM using nine causative variables. 
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Figure 8. Feature Importance of Landslide Variables graphs according to (a) XGBoost model (b) KNN Model (c) RF Model 

3.2. Mapping Results of Landslide Susceptibility 

Figure 9 indicates using the three mapping responses graded by the landslide index (LPI). The greater the landslide 

chance, the greater the LPI. The natural breakpoint method [18] used the class-division probability distribution 

histogram to divide the LPI into four classes (Jenks method). The decreasing value should be the distribution of 

possibility, the groups with a loss of balance (http://www.svds.com). In this analysis, the LPI was divided into four 

categories using the natural breakpoint procedure, which considers the histogram. 

3.2.1. KNN Landslide Susceptibility Map 

The research area, 55.2%, is covered by the KNN model's very high and high susceptibility classes (Figure 9-a). In 

contrast, the low and moderate vulnerability classes have 23.6% and 21.2% respective areas. 

3.2.2. XGBoost Landslide Susceptibility Map 

The XGBoost model classified 18.1% of the research area shows very high susceptibility, with values of 17.5%, 

24.2%, and 40.2% for low, moderate, and high vulnerability, respectively (Figure 9-b). 

3.2.3. RF Landslide Susceptibility Map 

The research area, 44.3%, is covered by the RF model's very high and high vulnerability classes (Figure 9-c). On the 

other hand, the moderate and low vulnerability classes have respective areas of 26.2% and 29.5%. 

3.3. Verification and Comparison 

Based on the effects of the three algorithms, the Janks natural breakpoint approach [18] was used to identify landslide 

vulnerability into four classes [40]: low, moderate, high, and very high, based on the results obtained using the three 

algorithms. For each algorithm, landslide susceptibility zoning maps were developed using this tool. For the XGBoost 

model, the LPI ranged from 0 to 1. In normal break conditions, the map of landslide vulnerability was divided into four 

susceptibility classes: low (0.00–0.17), moderate (0.17–0.43), high (0.43-0.71), and very high (0.71–1). The LPI for the 

KNN model varied from 0 to 1; four categories of landslide susceptibility maps were reclassified: low (0.00–0.01), 

moderate (0.01–0.49), high (0.49–0.85), and very high (0.85-1). The LPI ranged from 0 to 1 for the RF model, and the 

natural split system was used to reclassify a four-grade, low (0.00-0.19), moderate (0.19-0.40), high (0.40–0.63), and 

very high (0.63-1) susceptibility chart. The ROC curve was being designed to test the model's predictive capability. 

To compare the prediction precision of the model, the confusion matrix was used (Table 4). We observed from Table 

4 that all models were highly reliable. The precision of these models is 0.858(XGBoost), 0.861(KNN), and 0.856(RF), 

correspondingly. However, the accuracy was identical, and all three versions tend to be strong on the surface. The 

evaluation metrics seen in Figure 10 and Table 5 are the ROC curve and AUC. With values of 0.790, the KNN Model 

had the lowest AUC efficiency. The RF and XGBoost models displayed an AUC value more remarkable than the KNN, 

with AUC values of 0.895 and 0.893; correspondingly, the RF approach is best predictive. 
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Figure 9. Mapping Results of Landslide Susceptibility of Three Models. (a) LSM using XGBoost Model (b) LSM using KNN 

Model (c) LSM using RF Model 

Table 4. Confusion Matrix of XGBoost, KNN, and RF 

Models Label 
Predicted Label 

Kappa Accuracy 
No Yes 

XGBoost 
No 42 11 

0.494 0.858 
Yes 52 341 

KNN 
No 43 13 

0.493 0.861 
Yes 51 339 

RF 
No 41 9 

0.495 0.856 
Yes 53 343 
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Figure 10. ROC plots of RF, XGBoost, and KNN Models 

Table 5. AUC and Recall Value of RF, XGBoost, and KNN models 

Parameters RF XGBoost KNN 

AUC 0.895 0.893 0.790 

Recall Value 0.47 0.48 0.46 

The findings show that the XGBoost, KNN, and RF have fair precision for LSM in the studied area. Based on the 

AUC, RF and XGBoost achieved the highest accuracy compared to KNN, which indicates the results are in line with 

previous studies [10, 28, 29]. Similarly, other studies have compared several LSM approaches performance to determine 

the best model [56, 57]. The collaborative model's RF and XGBoost provide exceptional output with a limited range of 

hyper-parameters to tuning in, but they take a lot of time to run. The XGB, in particular, can process vast amounts of 

data while using less memory. Unlike the additional tree-based model, the XGB grows trees vertically rather than 

horizontally [58]. The XGBoost method verified the highest execution and an adequate time of training. The XGBoost 

is a specific application of the gradient boosting process and uses a memory-efficient technique to improve 

computational speed and model performance [59]. Whereas the KNN model is easy and basic to perform, its key 

drawback becomes exponentially slower as the amount of data grows, making it an unfeasible alternative in situations 

where forecasts must be complete quickly [58]. The Area under curve was used to determine the accuracy of the forecast 

effects, and AUC denotes the area under the curve bounded by the coordinate axis [60]. The RF model is a well-

functioning and reliable model. The strength of RF and XGBoost algorithms is when a large amount of data is missing, 

RF and XGBoost are suitable methods for estimating missing data and retaining validity [61]. 

Furthermore, the RF model offers certain benefits and drawbacks. The primary benefits are that the model is not 

overly sensitive to the variables used to run it, and it is easy to control which variables to use. Random forests tend to 

exaggerate low values while underestimating high ones, which is its major drawback. When the technique is utilized for 

regression, this restriction becomes apparent [62]. 

4. Conclusion 

Landslides have been one of Pakistan's most severe natural adversities, causing significant deaths and socio-

economic losses annually. So far, the process of landslide mapping has been quite complicated and volatile, making it 

difficult to predict the vulnerability of landslides accurately and timely in the most susceptible areas. For this purpose, 

various attempts have been made to enhance predictability based on several forecast models for mapping the landslide 
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vulnerability targeting different regions. It is essential for decision-makers to create more appropriate landslide 

vulnerability maps, to enhance the efficiency of the prediction model. In this study, various prediction models have been 

evaluated and compared, such as XGB, RF, and KNN, to select the most suitable and accurate one to forecast the 

landslide susceptibility. The model's comprehensibility helps determine the potential association between manipulating 

Parameters and LSM from data, which is critical for considering the parameters that influence landslide susceptibility. 

The LSM allows decision-makers to choose appropriate sites for the implementation of development projects. This 

research has defined the relationship between landslides and geo-environmental factors using three tree-based 

classifiers: XGBoost, RF, and KNN. The collaborative model's RF and XGBoost provide exceptional output with a 

limited range of hyper-parameters for tuning in. Based on the three machine learning techniques, the innovative 

consequences show that the performance of the Random Forest model has a maximum AUC value of 0.895 and is more 

efficient than the other tree-based classifiers. The contributing factors, such as Slope, and Elevation were the essential 

landslide parameters, while the influence rate of aspect was the minimum. These findings could be employed as 

fundamental data to help with land-use development and slope management. The robust results imply that the RF is the 

most appropriate model, based on the AUC, for mapping landslide vulnerability in the study and its vicinity. Therefore, 

the stakeholders should employ this model to forecast the landslide susceptibility in Azad Jammu and Kashmir and the 

adjacent districts more accurately. However, these could be less valuable on a particular site scale where regional 

geological and geographical diversities may dominate. Additional landslide data is required and implemented in other 

regions for the model to be widely implemented. The current research offers advanced knowledge to create more robust 

and detailed predictive models for landslides, which can be minimized in highly susceptible regions. 
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