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Abstract 

This paper aims to address the critical issue of multivehicle truck crashes in developing regions, with a focus on Thailand, 

by analyzing the factors that influence injury severity and comparing the effectiveness of predictive models. Utilizing 

advanced random parameters and the XGBoost machine learning algorithm, we conducted a comprehensive analysis of 

injury severity factors in multivehicle truck-involved accidents, contrasting weekdays and weekends. Our findings reveal 

that the XGBoost model significantly outperforms the heterogeneous logit model in predicting crash severity outcomes, 

demonstrating superior accuracy, sensitivity, specificity, precision, F1 score, and area under the curve (AUC) in both model 

training and testing phases. Key risk factors identified include motorcycle involvement, head-on collisions, and crashes 

occurring during late night/early morning hours, with environmental elements like road lane numbers and weekend hours 

also playing a significant role. The study introduces XGBoost as a novel and improved method for truck safety analysis, 

capable of capturing the complex interactions within multivehicle crash data and offering actionable insights for targeted 

interventions to reduce crash severity. By highlighting specific risk factors and the effectiveness of XGBoost, this research 

contributes to the development of data-driven strategies for enhancing truck safety in developing countries. 

Keywords: Truck-Involved Crashes; Injury Severities; Random Parameters; Machine Learning; eXtreme Gradient Boosting; SHAP. 

 

1. Introduction 

Trucks play a crucial role in powering Thailand's economy and transporting goods across the nation. However, they 

also pose a significant risk on the roads, being involved in a disproportionately high number of fatal crashes. Despite 

constituting only 20% of the vehicle population, trucks are implicated in 23% of fatal accidents, a stark contrast to the 

15% attributed to non-truck vehicles [1-3]. This scenario underscores a pressing need for a balance between economic 

benefits and public safety, emphasizing the role of data-driven insights in crafting effective interventions. 

Previous studies have extensively analyzed truck crash severity across various dimensions, such as rural versus urban 

settings, time of day, and specific road conditions [4–19]. These investigations highlight the multifaceted nature of crash 

severity factors but often focus on high-income countries or specific sub-groups of accidents. Crucially, the 
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differentiation between weekday and weekend crash severity has not been rigorously explored, particularly in the context 

of developing nations like Thailand. This gap in the literature points to an overlooked area of significant importance, 

given the unique socio-economic and infrastructural challenges faced by such countries. 

Addressing this gap, our study delves into the severity of multivehicle truck crashes in Thailand, comparing weekday 

and weekend incidents through a dual-methodological approach that combines traditional statistical models and 

advanced machine learning techniques, including XGBoost. This novel comparison not only highlights the 

methodological advancements in injury severity prediction but also emphasizes the local nuances in Thailand, a context 

significantly underrepresented in current literature. 

Most existing research leans towards developed countries, primarily the United States, with limited focus on the 

unique dynamics of truck crashes in developing contexts (see review of literature in Table 1). Furthermore, the potential 

of machine learning models, particularly XGBoost, to outperform traditional models in predicting injury severity has 

only recently been recognized, with little application in the nuanced settings of countries like Thailand [20–23]. 

By integrating these advanced methodologies to investigate a critical yet underexplored domain, our study aims to 

fill a significant knowledge gap. We propose not only to enhance the understanding of multivehicle truck crash severity 

in Thailand but also to contribute methodologically to the broader field of transportation safety research. Through this 

dual focus, we seek to offer actionable insights for reducing crash severity and, by extension, the associated human and 

economic tolls in developing regions reliant on truck transportation. 

2. Literature Review 

Table 1 reviews injury severity findings across truck crash studies over the past decade, highlighting key details on 

statistical methods, authorship, geographies, and insights. Most research centers on US data, with just one recent study 

in a developing nation (Iran) [24]. This definitively spotlights the need for further investigating developing contexts like 

Thailand, where truck crashes inflict immense economic and social costs. By extending severity analysis to the pressing 

yet overlooked Thai setting, this study helps address a critical knowledge gap regarding the truck safety landscapes of 

non-US developing countries. In an era when trucks persistently endanger lives across the developing world, related 

research and policy interventions must become more inclusive. This work marks an important step toward understanding 

and enhancing truck safety amidst the unique challenges in Thailand and similarly situated nations. 

Table 1. Review of studies on injury severity in truck-related crashes over the past decade 

Statistical approaches Authors Regions Key findings 

Random parameters ordered probit 

model 

Islam & Hernandez 

[25] 
Texas, US 

Increased injury severity is associated with excessive speed, involvement of multiple 

vehicles, curved road conditions, reduced visibility in darkness, and lane changes. 

Classification and Regression Tree 

(CART) model 
Chang & Chien [21] Taiwan 

Driving under the influence of alcohol, the use of seatbelts, and the type of vehicle emerged 

as the primary factors significantly impacting the severity of injuries in truck accidents. 

Random parameters logit model Islam et al. [5] Alabama, US 
The effects of different factors on the severity of injuries differed depending on whether the 

accidents occurred in urban or rural areas. 

Hierarchical random intercept model Chen et al. [4] New Mexico 
Inclined roadways, isolated rural truck accidents involving a single vehicle, youthfulness, 

and the influence of alcohol or drugs are contributing factors to severe crashes. 

Multinomial logit model Dong et al. [26] Tennessee, US 

A significant percentage of trucks, unorthodox road layouts, adverse weather circumstances, 

and the driver's condition were more likely associated with fatal or serious injuries, moderate 

injuries, possible injuries, and damage-only accidents, respectively. 

Random parameters logit model Pahukula et al. [6] Texas, US 

The severity of injuries from incidents with large trucks was observed to vary based on 

factors such as traffic flow, illumination conditions, the state of the road surface, changes in 

season, and the percentage of trucks involved during various time intervals. 

Random parameters logit and 

ordered logit model 
Naik et al. [27] Nebraska, US 

The severity of injuries has associations with variables such as wind speed, precipitation, 

humidity, and air temperature. 

Generalized ordered response logit 

model. 
Osman et al. [28] Minnesota, US 

Elements contributing to a higher probability of serious accidents in work zones encompass 

incidents occurring during the day, lack of access restrictions, increased speed limits, and 

crashes on rural main roads. 

Ordered probit models Hao et al. [8] US 
Enhanced speed management for trucks can substantially reduce the severity of driver 

injuries, and fatigue-related driving was a notable predictor of increased injury severity. 

Multinomial logit model Dong et al. [29] Tennessee, US 

The likelihood of injury severity is reduced when truck drivers use seat belts and when 

accidents occur during daylight. However, the likelihood of severe injuries increases in rural 

road crashes. 

Random parameters logit model Uddin & Huynh [11] Ohio, US 
The severity of injuries varied based on average annual daily traffic (AADT), speed, and 

weather conditions. 

Random parameters ordered probit 

model 

Al-Bdairi & 

Hernandez [30] 
Oregon, US Fatigue was linked to an increased likelihood of less severe crashes. 

Spatial generalized ordered probit 

model 
Zou et al. [7] New York, US 

In the afternoon and evening, single-vehicle accidents tended to result in less severe injuries, 

whereas multi-vehicle accidents exhibited more severe outcomes during these time frames. 

Random parameters logit model Khan & Khattak [9] US 
Truck trailers crossing railway tracks crashes involving train collisions, and senior drivers 

were associated with more severe crashes. 

Random parameters logit model Al-Bdairi et al. [10] Oregon, US 

Crucial elements influencing injury severity include the lack of seatbelt wear, curved roads, 

driver exhaustion, accidents involving vehicle rollovers, loss of control over the vehicle, and 

the sobriety of the driver. 
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Gradient boosting data mining 

model 
Zheng et al. [22] 

North Dakota and 

Colorado, US 

Crash severity tends to rise in the presence of wet road conditions, side winds, large vehicles, 

impacts with approaching traffic, and the involvement of either young or senior drivers. 

Bayesian logistic regression Ahmed et al. [12] Wyoming, US 
The probability of a severe accident increases to 2.3 times when heavy trucks are part of the 

incident. 

Partial proportional odds model Wang & Prato [31] China 
Factors linked to heightened injury severity include slopes greater than three percent, erratic 

driving patterns, vehicle overloading, conditions at night, and unfavorable climates. 

Random parameters with heterogeneity 

in means and variances model 

Behnood & 

Mannering [13] 
Los Angeles, US 

The ethnicity of the driver in crashes related to backing, sideswiping, hitting objects, 

collisions with parked vehicles, crashes involving fixed objects, and cases where the truck 

driver was at fault consistently had an impact on the likelihood of injury severity. 

Random threshold random parameters 

hierarchical ordered probit model 
Rahimi et al. [24] Iran Severe crashes were linked to roads that are curved and steep, and elevated driving speeds. 

Random parameters logit models Uddin & Huynh [15] Ohio, US 

Under normal conditions, poor visibility (whether it's dark or well-lit) and morning rush 

hours led to higher injury severity. When it rained, speeding intensified the severity of 

injuries, while injury severity levels were also increased by snowy weather, roads with 

curves, and collisions occurring in the afternoon. 

Random parameters ordered probit 

models 
Shao et al. [16] US 

In car-strike-truck accidents, both drivers under 25 and those over 64 years old had a 

significant impact, whereas in truck-strike-car accidents, only the age group of 55 to 64 

showed significance. 

Hierarchical Bayesian random 

intercept model 
Haq et al. [32] Wyoming, US 

Various factors, including the presence of junctions, road downgrades, curves, and weather 

conditions, were found to have different effects on the severity of injuries sustained in 

different types of vehicle-truck collisions. 

Binary logistic regression with the 

Bayesian random intercept model 

Tahmidul Haq et al. 

[17] 
Wyoming, US 

The severity of injuries sustained by truck drivers in crashes involving different driving 

actions was notably influenced by factors such as the total weight of the vehicle, the age and 

sex of the driver, the time of day, the conditions of illumination, and the existence of 

intersections. 

Hierarchical Bayesian random 

intercept model 
Haq et al. [18] Wyoming, US 

The severity of driver injuries varied based on factors such as the presence of junctions, 

incidents involving vehicles running off the road, the type of median, driver residency, 

restrictions on licenses, construction areas, and license restrictions. 

Random parameters logit with 

heterogeneity in means and 

variances model 

Wang et al. [19] 
Beijing-Shanghai and 

Changchun-Shenzhen 

Certain factors exhibited relative spatial or temporal consistency, such as the length of the 

horizontal curve, AADT, early morning, and overcast weather. 

Correlated random parameter logit 

with heterogeneity in means model 
Wen et al. [33] China 

A curve with a moderate slope and a medium radius notably increases the probability of 

medium severity in comparison to a curve with a larger radius and a flat slope. 

Random parameters bivariate probit 

model with heterogeneity in means 

and variances 

Song et al. [14] UK 

Male, young, and older individuals operating trucks, along with inappropriate actions taken 

by truck drivers, elevate the likelihood of injuries among truck drivers. For car drivers, older 

age and encounters with unsignalized crossings increase the risk of injury. 

Four key methodological approaches exist for analyzing transportation safety data, each with distinct trade-offs [34]. 

Traditional statistical models offer interpretability but struggle to establish causality amidst data limitations. 

Endogeneity/heterogeneity modeling helps address omitted variables and dynamics but encounters complexity 

constraints [35]. Data-driven machine learning delivers excellent predictive accuracy through detecting intricate 

patterns, yet causal insights may be lacking. Causal inference frameworks directly tackle causality but face 

implementation challenges. Ultimately, methodology selection necessitates navigating the inherent tension between 

predictive precision and explanatory power for uncovering causal mechanisms in transportation safety phenomena. This 

research harnesses the strengths of both traditional and data-driven methods to generate novel insights into the factors 

influencing truck crash severity outcomes. 

As shown in Table 1, numerous truck crash studies have adopted advanced modeling to address unobserved 

heterogeneity. Such techniques include random parameter ordered models [25], random parameters logit [5], random 

threshold hierarchical ordered probit [24], Bayesian random intercept models [28], and heterogeneous mean/variance 

random parameters logit [13, 14]. Extensions like correlated random parameters and heterogeneity in means/variances 

provide superior flexibility in capturing unseen effects [8, 36, 37]. By leveraging state-of-the-art discrete choice and 

machine learning methods, this research pushes truck safety analysis forward, not just improving predictive accuracy 

but extracting deeper insights into the latent and complex factors influencing real-world crash outcomes. 

Machine learning crash analysis is advancing with computational progress [20], offering model-free prediction 

without requiring deep process knowledge. While complementary to statistics, just two truck crash studies in Table 1 

use data-driven techniques: CART [21] and gradient boosting [22]. From a comprehensive review study, random forest 

leads for injury severity prediction, followed by SVM, decision trees, and KNN [20]. However, XGBoost has shown 

immense promise recently, achieving 97% accuracy—far beyond 73.8% for the logit model [38]. Zhang et al. [23] also 

found XGBoost-dominated classifiers in accuracy, kappa, F1, and AUC. For single and multi-vehicle crashes, 

respectively, XGBoost achieved 82%/80% accuracy, 0.61/0.57 kappa, 0.78/0.75 F1, and 0.88/0.86 AUC. Moreover, 

Jamal et al. [39] reported 93% XGBoost accuracy, surpassing decision trees (88%), random forests (84%), and logit 

(63%). In injury severity analysis, XGBoost thus consistently excels across performance metrics, meriting focused 

application here. By comparing discrete choice and potent new data science methods like XGBoost, this study 

strengthens truck crash scholarship methodologically and substantively. 
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2.1. Research Gap and Contributions 

In addressing the exigencies of transportation safety research, our study seeks to fill three pivotal gaps: the scarcity 

of multivehicle truck crash injury severity analysis in developing nations, the unexplored differences in crash severity 

between weekends and weekdays, and the comparative efficacy of XGBoost models versus sophisticated unobserved 

heterogeneity models like the mixed logit. The limited focus on developing countries, such as Thailand, underscores a 

critical void in understanding the unique dynamics influencing truck crashes outside high-income contexts. Furthermore, 

the nuanced distinction between weekend and weekday crash severities remains an uncharted domain, hinting at 

potentially different contributing factors that have yet to be empirically substantiated. Our investigation pioneers a 

comparative analysis between cutting-edge XGBoost models and mixed logit models—known for their adeptness at 

accounting for unobserved heterogeneity—specifically within the context of Thai multivehicle truck crash severity. This 

approach not only underscores an innovative methodological contribution but also addresses a doubly understudied area 

by spotlighting the uniquely vulnerable Thai context. Ultimately, this work aims to enhance the methodological 

foundations for transportation injury analysis while offering targeted insights for improving truck safety in developing 

regions. 

3. Research Methodology 

3.1. Discrete Choice Models with Random Parameters 

Qualitative choice models, also known as discrete choice models, are designed to characterize, elucidate, and forecast 

decisions among discrete options or outcomes [40]. Recent progress in regression models for limited dependent variables 

has been propelled by advancements in computing power and the emergence of models based on simulation. The focus 

of these advancements has largely been on developing behavioral models that more accurately account for variations in 

parameters at the individual level. To address this variability, the modeling approach assumes that coefficients randomly 

differ among individuals, following a continuous distribution denoted as 𝑔(𝛽𝑖|𝜃). To illustrate and justify the concept 

of random parameter models, consider the subsequent latent process [41]: 

𝑌𝑖𝑗
∗ = 𝑋𝑖𝑗𝛽𝑖 + 𝜀𝑖𝑗, (1) 

where, 𝛽𝑖~𝑔(𝛽𝑖|𝜃), in this equation, 𝑌𝑖𝑡
∗ represents an unobserved process for crash i that corresponds to injury severity 

j, 𝛽𝑖  denotes a vector of estimable parameters of injury severity j. 𝑋𝑖𝑗  is a vector containing explanatory variable 

covariates, and 𝜀𝑖 is the normally distributed error term. For the binary outcome model, the conditional probability 

𝑓(𝑌𝑖
∗|𝑋𝑖 , 𝛽𝑖) is defined as [41]: 

𝑓(𝑌𝑖
∗|𝑋𝑖 , 𝛽𝑖) = [𝐹(𝑋𝑖𝛽𝑖)

𝑌𝑖𝑡  [1 −  𝐹(𝑋𝑖𝛽𝑖)]1−𝑌𝑖   (2) 

Here, 𝐹(. ) denotes CDF of the disturbance term, where 𝐹(𝜀) = exp(𝜀) /1 + exp (𝜀) for the logit model. In the 

structural model described by Equation 1, we allow the vector coefficient 𝛽𝑖 to vary for each individual involved in the 

crashes. However, the exact variations in these parameters across individuals are unknown. What is known is that they 

follow the population probability density function 𝑔(𝛽𝑖|𝜃), where 𝜃 is the distribution moments including variance and 

mean. A fully parametric model is established when 𝑔(𝛽𝑖|𝜃) and the distribution of 𝜀 are specified. he unconditional 

probability density function (PDF) can be described as the weighted average of the conditional probability, which is 

calculated over all potential values of 𝛽. This depends on the parameters characterizing the distribution of 𝛽𝑖 [42]:  

𝑃𝑖(𝜃) = ∫ 𝑓(𝑌𝑖
∗|𝑋𝑖 , 𝛽𝑖) 𝑔(𝛽𝑖)𝑑𝛽𝑖 = ∫

exp (𝛽𝑖)

1−exp (𝛽𝑖)
 𝑔(𝛽𝑖)𝑑𝛽𝑖  (3) 

where, 𝑃𝑖(𝜃) represents the weighted probability outcome, and 𝑔(𝛽𝑖) = 𝑓(𝛽𝑖|𝜑) is the probability density function of 

𝛽 with the distribution parameter 𝜑, which can take various forms like normal, triangular, uniform, log-normal, etc. 

A significant and straightforward extension of the random parameter model involves permitting the coefficients to 

be correlated. In this scenario, Г represents a lower triangular matrix, often referred to as the Cholesky matrix. The 

observed heterogeneity can be accounted for by allowing parameter heterogeneity to be partially systematic concerning 

observed variables. This means it allows observed factors to influence the mean value of unobserved factors. Formally, 

the parameter vector can be expressed as [26, 30, 43]: 

𝛽𝑖 = 𝛽 + 𝜂𝑍𝑖 + Г𝜔𝑖 ,  (4) 

Here, 𝛽𝑖 denotes a parameter vector for crash i, 𝛽 stands for the constant term for the random parameter, 𝑍𝑖 is a vector 

of explanatory variables that capture heterogeneity in the mean of random parameters, 𝜂  represents the vector of 

estimable parameters corresponding to 𝑍𝑖 , 𝜂𝑍𝑖  represents the heterogeneous term that addresses unobserved 

heterogeneity arising from interactions (among explanatory variables) inducing variation in the parametric function of 

random parameters (i.e., their means are determined by the variables in 𝑍𝑖, 𝜔𝑖 is an unobservable 𝐾 × 1 (K is the number 

of random parameters) latent random term with a mean value of zero, resulting in the mean and variance-covariance 

matrix of random parameters to be 𝐸(𝛽𝑖|𝜔𝑖) = 𝛽 + 𝜂𝑍𝑖 and 𝑉𝑎𝑟(𝛽𝑖|𝜔𝑖) = ГГ𝑇), respectively. 
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Marginal effects represent outcome probability changes given a one-unit increase in an independent variable, with 

other predictors held constant. By translating statistical significance into tangible meaning, they enhance model 

interpretability and policy relevance. This study computed average marginal effects (AME) for both heterogeneous logit 

models. The AME equations for the two models are [42]: 

𝐴𝑀𝐸𝑋𝑚
=

1

𝐶
∑ [(𝑃𝑚(𝑋𝑚𝑞 = 1) − (𝑃𝑚(𝑋𝑚𝑞 = 0))]𝑐

𝑞=1   (5) 

where 𝑋𝑚 denotes the input variable m (e.g., attributes from the roadway, crash characteristics, etc.), c is the total number 

of observations that change their value from 0 to 1, and 𝑋𝑚𝑞  denotes the 𝑞th crash of the input 𝑋𝑚. 

3.2. eXtreme Gradient Boosting (XGBoost) 

XGBoost, an extension of gradient-boosting algorithms, was introduced by Chen & Guestrin [44] as an efficient and 

scalable approach to gradient-boosting trees. It is an ensemble method that builds upon Friedman's original Gradient 

Boosting approach [45], enhancing classification accuracy by recursively adding models that predict residuals from 

prior models. XGBoost is capable of utilizing maximum memory and hardware resources for data-intensive models, 

incorporating sparsity-aware data handling, and employing a weighted quantile sketch for approximate learning. These 

optimizations, achieved through insights on cache access patterns, data compression, and sharding, enable the training 

of billions of samples even in resource-constrained environments [31]. In the context of XGBoost modeling, we begin 

by describing the regularized learning objective. In mathematical terms, given a dataset D with k samples and m features, 

denoted as 𝐷 = {(𝑋𝑖 , 𝑌𝑖)} (⌈𝐷⌉ = 𝑘, 𝑋𝑖 ∈ ℝ𝑚, 𝑌𝑖 ∈ ℝ, tree ensemble model employs N additive functions to predict the 

output [44]: 

�̂�𝑖 = 𝜙(𝑋𝑖) = ∑ 𝑓𝑛(𝑋𝑖), 𝑓𝑛 ∈ 𝐹,𝑁
𝑛=1   (6) 

Here, 𝐹 = {𝑓(𝑥) = 𝜔𝑞(𝑥)}(𝑞 ∶  ℝ𝑚 → 𝑇, 𝜔 ∈ ℝ𝑇) denotes the space of regression trees (specifically, CART), N is the 

number of trees, F represents the space encompassing all trees, q is a tree structure, T denotes the number of tree leaves, 

𝑓𝑛 is an independent tree structure q, and leaf weight 𝜔, and 𝑞(𝑥) corresponds to the input data. To learn the set of 

functions employed in the model, a regularized objective function can be minimized as follows: 

Λ(𝜃) = ∑ 𝑙(�̂�𝑖 , 𝑌𝑖) + ∑ Ω(𝑓𝑛)𝑛𝑖   (7) 

where Ω(𝑓𝑛) = γT +
1

2
𝜆‖𝜔‖2 

where 𝑙 denotes a differentiable convex loss function measuring the prediction �̂�𝑖 and the target 𝑌𝑖. The second term Ω 

penalizes the model's complexity, which consists of the regression tree functions. γ  and 𝜆  are the regularization 

parameters. This additional regularization term helps smooth the final learned weights to prevent overfitting. In essence, 

the regularized objective tends to favor a model that employs simple yet predictive functions. However, optimizing the 

tree ensemble model is not feasible using traditional Euclidean space optimization methods. Instead, the model is trained 

in an additive manner, following this loss function: 

Λ(𝑡) = ∑ 𝑙(𝑌𝑖 , �̂�𝑖
𝑡−1

+ 𝑓𝑡(𝑋𝑖)) +𝑘
𝑖=1  Ω(𝑓𝑡)  (8) 

This equation incrementally adds the function 𝑓𝑡 that most improves the model according to Equation 6. 

3.3. SHapley Additive exPlanations (SHAP) 

XGBoost feature importance scores quantify variables' contribution to predictions, based on decision tree usage and 

impurity reductions. While insightful for variable selection and highlighting influential predictors, they do not convey 

relationship directions like discrete outcome model coefficients. 

Compared to traditional methods, SHAP values not only identify the impact of each feature on a prediction but also 

reveal complex interactions between features. This approach aids in ranking feature importance, explaining model 

behavior globally and locally, and serving as a valuable tool for model improvement. Therefore, this study adopted this 

approach for machine learning model interpretation [31, 46]. The SHAP value of a variable is determined using the 

following equation [47]: 

∅𝑖 = ∑
|𝑆|!(|𝑋|−|𝑆|−1)!

|𝑋|!𝑆⊆X\[i] [𝑓𝑆∪[𝑖](𝑥𝑆∪[𝑖]) − 𝑓𝑆(𝑥𝑆)]  (9) 

where ∅𝑖 represents the SHAP value or the marginal contribution of a variable. X denotes all variables, with S being a 

subset of these, and 𝑥𝑆 indicating the values of the variables within S. To analyze the impact of a particular feature, one 

model, 𝑓𝑆∪[𝑖] is created including the feature in question, while another model, 𝑓𝑆 is trained without the variable of 
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interest. The outcomes of these models are then compared to the existing output, shown as 𝑓𝑆∪[𝑖](𝑥𝑆∪[𝑖]) − 𝑓𝑆(𝑥𝑆). As 

the feature of interest is influenced by other variables in the model, this comparison is performed across every possible 

subset to calculate the differences. 

3.4. Research Process 

The research methodology, encapsulated in a detailed flow chart in Figure 1, commences with sourcing truck-related 

crash data for the years 2016-2020 from the Highways Accident Information Management System (HAIMS) Database, 
provided by the Department of Highways (DOH). This comprehensive dataset allows us to focus specifically on 
multivehicle truck-involved crashes, further categorizing incidents into weekend and weekday crashes. A preliminary 
analysis using a Likelihood Ratio Test confirms the differences in crash characteristics between these two categories, 
establishing a foundation for our comparative study. Subsequently, the data is partitioned into training and testing sets 

to facilitate the development and evaluation of our classification models. This phase includes a rigorous process of 
model training, hyperparameter tuning through an iterative refinement process, and evaluation to ascertain the models' 
effectiveness, leveraging metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. The culmination of this 
process identifies the best model with optimized hyperparameters, which undergoes an overfitting assessment to ensure 
its reliability and accuracy. To enhance the interpretability of our findings, we apply SHapley Additive exPlanations 
(SHAP) for a comprehensive result interpretation. This methodological approach not only enables a direct comparison 

of model performances—specifically between the XGBoost Model and Discrete Choice Models with Random 
Parameters—but also facilitates a deeper understanding of the key findings and informs our recommendations for 
enhancing truck safety measures. 

 

Figure 1. Research process flowchart 
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4. Data Collection 

This study utilized Thailand’s Department of Highways (DOH) data for 8,380 multivehicle truck crashes from 2016-

2020, with weekend (24.5%) and weekday (75.5%) subsets exhibiting 689 and 2,160 severe/fatal crashes, respectively. 

Figure 2 maps the geographical distribution. The accident data offered detailed insights into a multitude of factors, such 

as characteristics and conditions of the road, conditions of driving, specifics of the accident, types of collisions, types of 

other vehicles involved, attributes related to the size of the truck, and chronological aspects (like the time of day). Table 

2 presents descriptive statistics of the explanatory variables. 

 

Figure 2. Geographical distribution of the multivehicle truck-involved crashes in Thailand from 2016-2020 

Best practices mandate splitting data into mutually exclusive training (85% here) and test (15%) sets [48]. Key 

rationales include enabling unbiased performance evaluation on new data, detecting overfitting, parameter tuning, 

assessing generalizability, analyzing bias-variance trade-offs, model comparison, and simulating real-world conditions. 

By reserving an out-of-sample test set, models can be objectively evaluated on their ability to accurately predict unseen 

crash outcomes in applied settings. Both weekday and weekend crash severity analyses adopted this rigorous framework. 

To justify our decision to separately estimate the models for weekday and weekend multivehicle truck-involved 

crashes, we conducted a transferability test using the likelihood ratio test (LRT) (i.e., 𝜒2 = −2[𝐿𝐿(𝛽𝑇𝑜𝑡𝑎𝑙) −
𝐿𝐿(𝛽𝑊𝑒𝑒𝑘𝑑𝑎𝑦) − 𝐿𝐿(𝛽𝑊𝑒𝑒𝑘𝑒𝑛𝑑)]. The resulting χ2 value of 163.1, distributed with 46 degrees of freedom, indicates that 

estimating both weekday and weekend multivehicle truck-involved crashes separately is statistically warranted at a 

confidence level of 99.99%. 
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5. Model Evaluation 

This study utilizes key evaluation metrics to benchmark model performance [49, 50]: 

Accuracy =
TP+TN

TP+TN+FP+FN
  (10) 

Recall (Sensitivity) =
TP

TP+FN
  (11) 

Specificity =
TN

TN+FP
  (12) 

Precision =
TP

TP+FP
  (13) 

F − Score =
2TP

2TP+FN+FP
  (14) 

AUC =
1

2
(Recall + Specificity)  (15) 

Table 2. Input variables description and descriptive statistic 

Variable 
Weekday Weekend 

Mean SD Mean SD 

Roadway Characteristics 

Main Lane 0.105 0.307 0.093 0.290 

Frontage Lane 0.041 0.198 0.042 0.200 

Lane = 4 0.404 0.491 0.388 0.487 

Lane = 6/8 0.293 0.455 0.300 0.458 

Lane > 8 0.079 0.270 0.084 0.277 

Flush Median 0.065 0.246 0.054 0.225 

Raised Median 0.192 0.394 0.175 0.380 

Depressed Median 0.318 0.466 0.317 0.466 

Barrier Median 0.209 0.407 0.228 0.420 

Concrete Pavement 0.168 0.374 0.164 0.370 

Curve road 0.097 0.296 0.101 0.301 

Slope road 0.042 0.200 0.045 0.208 

Intersection 4-leg 0.049 0.216 0.055 0.228 

Intersection 3-leg 0.053 0.224 0.050 0.217 

U-Turn 0.058 0.233 0.052 0.222 

Wet road 0.101 0.301 0.108 0.310 

Nighttime-lit Road 0.318 0.466 0.339 0.474 

Nighttime-unlit Road 0.098 0.298 0.115 0.319 

Driving conditions 

Over Speed Limit 0.732 0.443 0.733 0.442 

Unexpected Crossing 0.113 0.316 0.101 0.301 

Fatigue 0.047 0.212 0.055 0.229 

Crash characteristics 

Read-end 0.572 0.495 0.586 0.493 

Sideswipe 0.200 0.400 0.184 0.388 

Head-on 0.076 0.265 0.080 0.272 

Second party’s vehicle types 

Motorcycle 0.219 0.414 0.205 0.404 

Car 0.256 0.437 0.296 0.457 

Van 0.038 0.192 0.041 0.199 

Pickup truck 0.322 0.467 0.318 0.466 

Bus 0.023 0.151 0.024 0.154 

Truck sizes 

Truck 6W 0.278 0.448 0.247 0.431 

Truck 8/10W 0.269 0.444 0.266 0.442 

Truck >10W 0.550 0.498 0.572 0.495 

Temporal attributes 

Morning peak [7:00-8:59] 0.094 0.292 0.091 0.288 

Nighttime off-peak [19:30-23:59] 0.169 0.375 0.171 0.376 

Early morning [0:00-6:59] 0.217 0.412 0.239 0.427 

Afternoon peak [17:00-19:30] 0.113 0.316 0.120 0.325 
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These metrics are computed based on values from the confusion matrix, which includes: a) True positive (TP) rate: 
The proportion of actual positives that are correctly predicted. b) True negative (TN) rate: The proportion of actual 
negatives that are correctly predicted. c) False positive (FP) rate: The proportion of actual negatives that are incorrectly 

predicted as positives. d) False negative (FN) rate: The proportion of actual positives that are incorrectly predicted as 
negatives. Together, these comprehensive metrics enable holistic assessment across critical dimensions like correctness, 
true positive/negative rates, predictive value, imbalance handling, and discrimination. By leveraging multi-pronged 
evaluation grounded in established principles, this study achieves rigorous and transparent benchmarking essential for 
methodological advancements. The workflow and reporting standards further bolster reliability and framing for safety 
applications. 

Grid search optimization of key XGBoost hyperparameters (listed in Table 3) minimizes overfitting, using log loss 
comparisons between training and test sets [51, 52]. Based on the model performance comparison Table 4, XGBoost 
consistently and considerably outperforms RPBLHM for predicting severity in both weekday and weekend multivehicle 
truck crashes. XGBoost achieves superior performance in all metrics across both training and testing data sets. 

Table 3. Hyper-parameter values extracted with the use of grid search algorithms for XGBoost Models 

Parameter Description Weekday crash model Weekend crash model 

eta Learning rate: [0,1] 0.1 0.3 

max_depth Maximum depth of a tree: [0,20] 3 5 

gamma Min_split_loss: [0,10] 8 2 

alpha L1 regularization term on weights: [0,10] 6 2 

lambda L2 regularization term on weights: [0,10] 5 2 

objective Objective function "binary:logistic" "binary:logistic" 

eval_metric Evaluation metric "logloss" "logloss" 

Table 4. XGBoost and RPBLHM’s performance comparison 

Model Data Accuracy Sensitivity Specificity Precision F-score AUC 

Weekday multivehicle truck-involved crash models 

XGBoost 
Training 0.740 0.429 0.899 0.687 0.528 0.664 

Testing 0.732 0.428 0.896 0.691 0.529 0.662 

RPBLHM  
Training 0.719 0.424 0.871 0.628 0.507 0.648 

Testing 0.707 0.371 0.890 0.646 0.471 0.630 

Weekend multivehicle truck-involved crash models 

XGBoost 
Training 0.767 0.493 0.910 0.740 0.591 0.701 

Testing 0.764 0.545 0.856 0.615 0.578 0.701 

RPBLHM  
Training 0.718 0.479 0.842 0.611 0.537 0.661 

Testing 0.720 0.455 0.832 0.533 0.491 0.643 

As shown in Table 4, the comparative analysis reveals distinct advantages in predictive performance. For weekday 
crash data, the XGBoost model achieves higher accuracy rates in both training (0.740) and testing phases (0.732) 
compared to the RPBLHM model (training: 0.719; testing: 0.707). This indicates a more precise overall classification 
of crash severities by the XGBoost model. 

Notably, XGBoost's performance superiority is further underscored by its enhanced sensitivity, precision, and F-
score. These metrics are critical as they reflect the model's ability to accurately identify severe crashes (sensitivity), 

correctly predict a higher proportion of severe crash outcomes as such (precision), and effectively balance precision and 
sensitivity (F-score). For example, in testing, XGBoost achieves a sensitivity of 0.428 and a precision of 0.691, 
outperforming the RPBLHM model's sensitivity of 0.371 and precision of 0.646. Such improvements are crucial for 
formulating precise safety interventions, as they ensure that severe crashes are identified more reliably. 

The trend continues with weekend crash data, where XGBoost uniformly surpasses RPBLHM across all evaluative 
metrics, achieving a testing accuracy of 0.764 compared to RPBLHM’s 0.720. The higher sensitivity, precision, and F-
scores of XGBoost indicate a superior capability in identifying severe crashes while minimizing incorrect severe crash 
predictions. 

XGBoost's exceptional performance can be attributed to its advanced machine-learning techniques, including 
ensemble learning and differential evolution mechanisms. These techniques allow XGBoost to adeptly navigate the 

complexities of multivehicle truck crash data, accommodating intricate variable interactions that traditional models like 
RPBLHM struggle with. As such, XGBoost's methodological sophistication not only enhances the accuracy of severe 
crash predictions but also reduces the likelihood of false alarms, thereby providing a robust framework for deriving 
safety-critical insights from complex data landscapes. 
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In summary, our analysis underscores the methodological advantages of the XGBoost model in predicting injury 
severity outcomes in multivehicle truck crashes, offering a significant improvement over traditional models in terms of 
accuracy, sensitivity, precision, and F-scores. This comprehensive performance benchmarking establishes XGBoost as 

the superior approach for analyzing and interpreting nuanced crash severity data, laying the groundwork for more 
effective safety interventions based on precise, data-driven insights. 

6. Result and Discussion 

Tables 5 and 6 present the results of the fixed effect model (FEM), random parameters model (RPM), and random 
parameters model with heterogeneity in means model for weekday and weekend truck-involved crashes, respectively. 
Likelihood ratio tests justify the superiority of RPBLHM over RPBL (p<0.05), and RPBL over the binary logit model, 
for weekday and weekend crashes models. The RPBLHM weekday and weekend R2 values reach 0.173 and 0.183, 

respectively - indicating acceptable binary classification injury severity predictive performance [30, 53]. Figures 3 to 6 
show the results of the SHAP analysis including the feature importance and impact of the input features on the model 
output predictions for weekday and weekend crashes. The following subsections focus on variable impact rankings to 
simplify cross-model comparisons. 

Table 5. Weekday multivehicle truck-involved crash result using discrete outcome models [coefficient (Z-value)] 

Variable FEM RPM RPBHM AME 

Constant -2.106(-10.24) -2.24(-10.09) -2.249(-10.04)  

Lane = 4 0.355(2.15) 0.451(2.53) 0.452(2.54) 0.0727 

Raised Median -0.298(-1.68) -0.378(-2) -0.38(-2) -0.0597 

Barrier Median -0.744(-3.96) -0.862(-4.27) -0.867(-4.27) -0.1407 

Mean. Concrete pavement -0.141(-1.46) -0.283(-1.78) -0.216(-1.29) -0.0119 

SD. Concrete pavement  0.92(2.26) 1.179(2.98)  

Distributional split. Concrete pavement 
PDO/Minor = 57.27% 

Severe/Fatal = 42.73% 
 

Concrete pavement: Car   -0.621(-2.13)  

Mean. Curve road -0.062(-0.5) -0.319(-1.53) -0.452(-1.98) -0.0406 

SD. Curve road  1.526(3.12) 1.356(2.71)  

Distributional split. Curve road 
PDO/Minor = 63.06% 

Severe/Fatal = 36.94% 
 

Curve road: Pickup Truck   0.464(1.63)  

Intersection 3-leg 0.245(1.71) 0.266(1.76) 0.271(1.78) 0.0457 

U-Turn 0.292(2.12) 0.304(2.1) 0.301(2.06) 0.0508 

Nighttime-lit Road 0.479(4.71) 0.527(4.88) 0.537(4.94) 0.0910 

Nighttime-unlit Road 0.512(3.99) 0.551(4.02) 0.554(4.04) 0.0953 

Over Speed Limit 0.313(2.73) 0.35(2.85) 0.352(2.87) 0.0604 

Unexpected Crossing 0.288(1.97) 0.31(2.01) 0.317(2.04) 0.0537 

Fatigue 0.635(3.58) 0.72(3.81) 0.732(3.86) 0.1278 

Read-end 0.388(3.63) 0.393(3.44) 0.398(3.46) 0.0648 

Head-on 1.439(9.54) 1.586(9.4) 1.574(9.29) 0.2862 

Motorcycle 1.84(19.47) 1.956(18.4) 1.972(18.46) 0.3803 

Mean. Bus 0.245(1.14) -0.675(-0.72) -0.658(-0.73) 0.0087 

SD. Bus  3.475(1.64) 3.457(1.7)  

Distributional split. Bus 
PDO/Minor = 57.55% 

Severe/Fatal = 42.45% 
 

Early morning 0.217(1.98) 0.215(1.86) 0.219(1.88) 0.0361 

Model statistic     

P 37 40 42  

LL(Contant) -3445 -3445 -3445  

LL(B) -2861.471 -2854.286 -2850.442  

R2 0.169 0.171 0.173  

AIC 5796.943 5788.571 5784.884  

Model comparison    

Comparison pair  FE vs. RPBL RPBL vs. RPBLHM  

Degree of freedom  3 2  

Chi-square  14.371 7.6869  

Significant level  0.002 0.02  

Note: Random parameters were estimated based on normal distribution ω_i~N(0,1) and 1000 Halton Draw. 

Correlations between random parameters were not significant. 
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Table 6. Weekend multivehicle truck-involved crash result using discrete outcome models [coefficient (Z-value)] 

Variable BL RPBL RPBLHM AME 

Constant -1.087(-2.98) -1.341(-3.12) -1.415(-3.29)  

Depressed Median -0.555(-2.02) -0.474(-1.51) -0.458(-1.46) -0.0649 

Barrier Median -0.871(-2.91) -0.821(-2.38) -0.793(-2.29) -0.1159 

Mean. Concrete pavement 0.173(1.08) -0.111(-0.36) -0.119(-0.39) 0.0213 

SD. Concrete pavement  1.674(2.27) 1.682(2.26)  

Distributional split. Concrete pavement 
PDO/Minor = 52.82% 

Severe/Fatal = 47.18% 
 

Mean. Curve road -0.159(-0.71) -0.513(-1.32) 0.043(0.1) 0.0514 

SD. Curve road  2.107(2.36) 2.128(2.38)  

Distributional split. Curve road 
PDO/Minor = 49.19% 

Severe/Fatal = 50.81% 
 

Curve road: Lane = 4   -1.544(-2.1)  

Nighttime-unlit Road 0.741(3.51) 0.886(3.67) 0.906(3.75) 0.1436 

Fatigue 0.541(1.82) 0.821(2.34) 0.849(2.43) 0.1333 

Mean. Sideswipe -0.072(-0.34) -0.446(-1.25) -0.434(-1.22) -0.0285 

SD. Sideswipe  1.64(2.66) 1.633(2.65)  

Distributional split. Sideswipe 
PDO/Minor = 60.48% 

Severe/Fatal = 39.52% 
 

Head-on 1.117(4.3) 1.206(4) 1.19(3.94) 0.1943 

Motorcycle 1.794(10.47) 2.155(9.57) 2.157(9.59) 0.3794 

Nighttime off-peak 0.533(2.54) 0.625(2.59) 0.612(2.54) 0.0946 

Early morning 0.417(2.26) 0.474(2.22) 0.462(2.17) 0.0695 

Model statistic     

P 37 40 41  

LL(0) -1130 -1130 -1130  

LL(B) -931.074 -925.829 -923.008  

R2 0.176 0.181 0.183  

AIC 1936.149 1931.657 1928.016  

Model comparison    

Comparison pair  FE vs. RPBL RPBL vs. RPBLHM 

Degree of freedom  3 1  

Chi-square  10.492 5.6417  

Significant level  0.014 0.017  

Note: Random parameters were estimated based on normal distribution ω_i~N(0,1) and 1000 Halton Draw. 

Correlations between random parameters were not significant. 

 

Figure 3. Feature importance of weekday crashes using SHAP 
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Figure 4. Impact of the input feature on the output prediction for weekday crashes using SHAP 

 

Figure 5. Feature importance of weekend crashes using SHAP 

6.1. Weekday Crashes Model Result 

According to the results from the XGBoost model, seven factors were pinpointed as the primary predictors of crash 

severity, with the involvement of a motorcycle identified as the most critical factor (as illustrated in Figures 3 and 4). 

This finding is consistent across both the XGBoost and RPBLHM models, underscoring motorcycle involvement as the 

paramount predictor of truck crash severity. In the RPBLHM model, the marginal effect of motorcycle involvement was 

quantified at 0.3803, signifying its substantial influence on crash outcomes. This result is both intuitive and reflective 

of the inherent risks associated with motorcycles. This finding is consistent with the previous studies [54-57]. 

Motorcycles lack the protective barriers that enclosed vehicles provide, exposing riders to greater harm in the event of 

a collision. Their relatively small size, when compared to large trucks, exacerbates the severity of impacts, markedly 

increasing the likelihood of serious or fatal injuries. The disparity in size and weight between motorcycles and trucks 

leads to more forceful collisions, further amplifying the risk of severe outcomes. Additionally, the absence of safety 
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features that are standard in enclosed vehicles leaves motorcycle riders particularly vulnerable in crashes. Thus, when a 

motorcycle is implicated in a truck crash, the likelihood of severe or fatal outcomes escalates dramatically, a fact that is 

empirically supported by our model's identification of motorcycle involvement as the foremost predictor of increased 

crash severity. 

 

Figure 6. Impact of the input feature on the output prediction for weekend crashes using SHAP 

The analysis identifies the head-on crash type as the next most significant factor influencing the severity of truck 

crashes, markedly increasing the likelihood of severe and fatal injuries, as depicted in Figure 4. This finding is 

corroborated by both the XGBoost and RPBLHM models, which consistently rank head-on collisions as the second 

most critical predictor of crash severity, evidenced by an Average Marginal Effect (AME) of 0.2862 in the RPBLHM 

model. The effect of head-on crashes found in this study is also in line with recent studies [14, 55, 58]. Head-on collisions 

are particularly devastating due to the sum of the velocities of the colliding vehicles, resulting in a significantly high 

impact force that can cause catastrophic damage [58]. The inherent size and weight disparity between large trucks and 

smaller passenger vehicles exacerbates the danger, with the greater mass of trucks contributing to higher kinetic energy 

at the moment of collision, thereby intensifying the impact [55]. Despite advancements in crash protection for trucks, 

the significant weight difference remains a critical factor that disadvantages them in head-on collisions with smaller 

vehicles, leading to a heightened risk of severe damage and occupant compartment intrusion. As such, the force exerted 

in head-on truck crashes significantly raises the likelihood of severe and fatal injuries. This effect is unequivocally 

demonstrated through the truck crash severity models, affirming head-on collisions as a paramount concern for road 

safety. 

Within the findings of the XGBoost model, crashes occurring on roads equipped with barrier medians emerge as the 

third most influential factor, notably indicating that truck-involved crashes on these roads during weekdays are 

associated with lower levels of injury severity, as illustrated in Figure 4. This observation aligns with the outcomes 

presented by the RPBLHM model, suggesting a consistent understanding across modeling approaches regarding the 

protective impact of barrier medians. The rationale behind the reduced severity of crashes on roads with barrier medians 

stems from several key functions these structures serve. Firstly, median barriers effectively separate opposing lanes of 

traffic, significantly reducing the possibility of devastating head-on collisions and secondary impacts that often result in 

higher injury severities, consistent with Alrejjal, et al. [59]. Additionally, these barriers provide a crucial buffer zone, 

granting drivers increased reaction time to either avert accidents altogether or diminish the force of impact by reducing 

speed [60]. The enhanced visibility along roads with median barriers further aids in preventing hazardous lane 

departures, a benefit that is particularly significant for large vehicles such as trucks. Given their size and momentum, 

trucks find it especially challenging to cross tall concrete median barriers, thus maintaining them within their designated 

lanes during instances of control loss. Consequently, the presence of barrier medians acts as a preventive measure against 
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severe truck crashes by mitigating the occurrence of head-on collisions and facilitating better control over the vehicle in 

emergent situations. The protective effect of barrier medians, as quantified by our model results, underscores their 

importance in promoting safer outcomes in truck-involved crashes on roads equipped with these structures. 

The analysis conducted using the XGBoost model highlights a notable correlation between the number of lanes on 
a roadway and the severity of injuries resulting from truck crashes. Specifically, incidents occurring on 4-lane roads 
during weekdays are more likely to culminate in severe and fatal outcomes compared to those on roads with six or more 

lanes. Interestingly, multi-vehicle collisions on four-lane highways consistently lead to more serious injuries than similar 
incidents on two-lane roads or highways with six or more lanes. A similar finding was also revealed in a recent study 
[55]. A plausible explanation for this pattern is the unique role of four-lane highways as principal arteries connecting 
urban centers, often traversing rural expanses or extending over long interstate stretches. These roads are characterized 
by high-speed limits and heavy traffic flows, conditions that heighten the risk of high-impact rear-end collisions 
involving trucks [53]. The aerodynamics and momentum of trucks on such highways can exacerbate the severity of 

crashes, particularly in instances where vehicles crash into the rear of trucks, leading to underride accidents. These 
accidents often result in the intrusion of the passenger compartment, significantly increasing the likelihood of occupant 
ejection or fatality. Moreover, the limited space available in medians on four-lane roads may elevate the risk of 
secondary collisions following unsafe evasive maneuvers in response to impending crashes. This evidence underscores 
the heightened danger of severe injury outcomes on 4-lane roads, marking them as particularly hazardous for truck-
involved incidents. 

The XGBoost model has delineated crashes occurring during the early morning hours as a significant predictor of 
increased severity in truck crash outcomes. This period's association with severe and fatal crashes can be attributed to 
several factors that converge to elevate risk. Several studies have also discovered similar findings [15, 19, 27]. During 
these hours, traffic density typically decreases, leading to an increase in danger. With roads less congested, drivers are 
more inclined to accelerate, reaching higher speeds that can dramatically escalate the severity of any crash. High-speed 
incidents, even with minor initial loss of control, can result in significantly more violent impacts. Compounded by the 

early morning darkness, visibility diminishes, which crucially hampers drivers' ability to detect obstacles and react 
timely. The darkness of these hours reduces drivers' reaction times and complicates obstacle detection, further increasing 
the likelihood of severe accidents. Motorcyclists, who are already at a disadvantage due to the lack of protective 
enclosures and stability systems, find themselves in particularly perilous conditions. At high speeds, any collision can 
lead to catastrophic outcomes, including ejections or uncontrolled slides, heightening the risk of severe injuries or 
fatalities. These factors—reduced visibility, increased speeds, and the inherent vulnerability of motorcyclists—combine 

to create a perilous traffic environment during early morning hours. This explains the model’s finding that this time 
frame is associated with a higher likelihood of truck crashes resulting in severe and fatal injuries, underlining the need 
for targeted safety interventions during these hours. 

6.2. Weekend Crashes Model Result 

Analysis of the weekend crash data, as illustrated in Figures 5 and 6, reveals a broader array of variables significantly 

influencing the severity of truck-involved crashes, in comparison to weekday incidents. Echoing the patterns observed 

in weekday crashes, the involvement of a motorcycle in truck crashes emerges as the predominant predictor of increased 

injury severities, including severe and fatal outcomes. The elevated risk associated with motorcycle involvement can be 

attributed to a constellation of factors: the stark size disparity between motorcycles and trucks, the motorcycles' inherent 

instability, the absence of protective enclosures, challenges in visibility, and the pronounced likelihood of motorcycles 

becoming ensnared beneath trucks [56]. 

Parallel to findings from weekday incidents, truck crashes occurring on weekends that take place on roads with 

barrier medians or those spanning 6/8 lanes are less likely to result in severe or fatal outcomes, as opposed to incidents 

on roads with other types of medians or fewer lanes. This suggests that the presence of barrier medians and wider 

roadways contributes to mitigating crash severity, likely due to enhanced separation of traffic flows and increased space 

for maneuvering and crash avoidance. 

Furthermore, consistent with weekday analysis, head-on collisions stand out as critical predictors of severe and fatal 

injuries during the weekend, surpassing other collision types such as sideswipe incidents. This underscores the 

particularly destructive nature of head-on impacts, which combine the vehicles' velocities into a singular, formidable 

force, dramatically increasing the potential for catastrophic damage and severe injuries. 

The analysis distinctly identifies nighttime off-peak hours (19:30-23:59) as key predictors of crash severity during 

weekends, setting this period apart from typical weekday patterns. Despite not reporting day-of-week, the findings of 

previous studies support our result [7, 38]. This variance is attributed to the unique nature of weekend nighttime traffic, 

which often comprises a higher proportion of leisure travelers, alongside an increase in fatigued drivers and those 

impaired by alcohol [61]—factors less prevalent during the weekday. The likelihood of encountering intoxicated 

motorists escalates on weekends, particularly as late-night social activities wind down, contributing to heightened risks 

of severe crashes. 

Additionally, the effects of fatigue, common during peak hours, extend into these weekend late-night periods. Truck 

drivers, at the end of long shifts and navigating in reduced visibility, face compounded risks. This combination of 
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factors—darkness, unpredictable traffic flows, the presence of impaired road users, and driver fatigue—crafts a perilous 

traffic environment. The reduced reaction times and the likelihood of unsafe driving maneuvers that characterize this 

period amplify the potential for high-speed impacts and rollovers. 

Moreover, crash severity involving impaired occupants is often exacerbated by lower seatbelt usage rates and 

diminished efficacy of front airbags. Thus, the confluence of these late-night factors during weekends significantly 

elevates the probability of severe truck crash outcomes, underscoring the distinct risks posed by this time frame in 

contrast to other periods. 

The XGBoost model compellingly highlights that early morning hours (00:00-06:59) on weekends are significantly 

associated with an increased likelihood of severe truck crashes. This time frame is particularly perilous due to a 

combination of factors: diminished visibility under cover of darkness, heightened driver fatigue, less rigorous traffic 

management and enforcement, slower emergency response times, and the rigorous demands of trucking schedules. 

Intriguingly, the severity risks during these weekend early morning hours surpass those of weekday incidents, as 

evidenced by consistently higher AMEs, indicating that weekends carry distinct risks not as prevalent during the week. 

This observation is in line with established research findings [19, 62].  

Additionally, the model underscores driver fatigue as a critical factor contributing to the severity of weekend crashes. 

Fatigue significantly undermines essential physical and cognitive functions, notably slowing reaction times, diminishing 

attention, impairing judgment, and reducing vehicle control efficacy. Previous studies have shown that fatigue can 

increase the likelihood of engaging in incapacitating or fatal crashes by up to eight times, especially in the context of 

multivehicle versus single-truck incidents [63]. Drowsy truck drivers are particularly vulnerable to failing to respond 

promptly to the movements of leading vehicles, drifting out of their lanes, and executing fewer defensive manoeuvres 

in the event of control loss. The interplay of fatigue, the veil of darkness, and the pressures of weekend trucking 

schedules constitutes a critical risk period in the early morning hours for truck operations. 

6.3. Unobserved Heterogeneity 

Despite involving more than two random parameters, neither the weekday nor weekend RPBLHM models exhibited 

significant random parameter correlations. Variables that were found to have varied effects on the weekday crash 

outcomes are concrete pavement, curve road, and crashes involving buses; whereas variables with varied effects on the 

weekend crash outcomes are concrete pavement, curve road, and sideswipe crash type (Table 5 and 6). However, both 

groups featured noteworthy heterogeneity in means. Weekday model insights include car involvement decreasing 

concrete pavement means, reducing severity likelihoods; and pickup trucks increasing curved road means, escalating 

severe/fatal odds. Meanwhile, for weekends, four-lane roads decreased curved road means, heightening PDO/minor 

probabilities. While random parameter correlations proved negligible, influential heterogeneity subtleties emerged - 

with vehicle types and road features interactively impacting day-specific risks through accident site means effects. 

7. Summary and Conclusion 

Multivehicle truck crashes persistently endanger lives and economies across developing regions, including middle-

income Thailand. This study tackles this urgent problem through a comprehensive analysis of injury severity factors in 

Thai multivehicle truck-involved accidents, contrasting weekdays and weekends via advanced random parameters and 

XGBoost models. 

The results reveal XGBoost as a breakthrough methodological asset for truck safety analysis. Across both weekday 

and weekend scenarios, XGBoost consistently and considerably surpasses heterogeneous logit at predicting truck crash 

severity outcomes. Specifically, XGBoost demonstrates unambiguously superior performance in accuracy, sensitivity, 

specificity, precision, F1 score, and AUC in both model training and testing. This evinces its excellence at correctly 

classifying severe crash outcomes while minimizing false alarms - achieving the elusive balance that defines state-of-

the-art predictive power. Fundamentally, the dominance of XGBoost stems from its ensemble approach being uniquely 

equipped to handle the intricate data relationships inherent in truck safety datasets. The complex interplay of 

spatiotemporal factors, vehicle types, road features, and crash dynamics defies simplification. Yet XGBoost algorithmic 

flexibility allows it to capture subtle data nuances that evade traditional techniques like regression. This research thereby 

pioneers and validates XGBoost as an ideal injury severity prediction tool for illuminating the most influential risk 

factors from multifaceted multivehicle truck crash data. The actionable insights unlocked can thus guide transportation 

agencies towards targeted, optimized interventions to curtail truck crash severity more effectively than previously 

possible. Overall, the capability demonstrated by XGBoost represents an invaluable asset for enabling pivotal, lifesaving 

advances in data-driven truck safety. 

This analysis provides new insight into factors influencing the heightened severity of truck crashes. Consistently 

across models, motorcycle involvement, head-on collisions, and late-night/early AM crashes emerged as predominant 

risk factors escalating truck crash severity. Furthermore, certain environmental factors, including barriers, road lane 

numbers, and weekend hours, were shown to disproportionately modulate severity likelihoods. Crucially, significant 

day-specific heterogeneity and interacting effects also transpire through diverse vehicle-road variable permutations. 

These findings spotlight the outsized threats posed by interactions between vulnerable road users and complex 

spatiotemporal conditions in exacerbating truck crash outcomes. Accordingly, infrastructure refinements and targeted 
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enforcement should concentrate on locations with 4/fewer lanes undergoing periodic weekday volume surges. 

Meanwhile, trucking oversight prioritization should emphasize addressing schedule pressures encouraging fatigued, 

early AM, and late-night weekend driving, especially among operators exhibiting dangerous or intoxicated behaviors. 

Ultimately, this work highlights the reality of residual truck crash severity risks that will likely require multi-pronged 

solutions beyond vehicle-based countermeasures alone. 

The findings offer actionable insights that can significantly inform and refine interventions and safety measures 

aimed at reducing the severity of multiple truck crashes. Based on the analysis results, several targeted interventions are 

proposed: (1) Enhanced Motorcycle Awareness: Given the high risk associated with motorcycle involvement in truck 

crashes, increasing awareness among truck drivers through training programs about motorcycles' vulnerabilities and 

promoting the use of advanced detection technologies could mitigate risks. Additionally, campaigns aimed at 

motorcyclists to maintain safe distances and visibility near trucks can be beneficial. (2) Infrastructure Improvements for 

Head-On Collision Prevention: The study highlighted head-on collisions as a major contributor to crash severity. 

Implementing physical barriers and median separations on highways, especially on routes identified with higher 

occurrences of such crashes, could prevent these high-impact events. Moreover, investing in road design that reduces 

the likelihood of head-on collisions, such as clearer lane demarcations and rumble strips, is crucial. (3) Regulating and 

Monitoring Driving Hours: Our findings regarding the timing of crashes suggest the need for stricter enforcement of 

regulations concerning driving hours, especially for truck drivers, to combat fatigue. Implementing electronic logging 

devices (ELDs) to accurately monitor and enforce rest periods for truck drivers can reduce crashes due to driver fatigue, 

particularly during early morning and late-night hours. (4) Alcohol and Substance Abuse Interventions: Considering the 

elevated risk of crashes during nighttime and early morning hours on weekends, interventions to reduce alcohol and 

substance abuse among all drivers, including increased DUI checkpoints and educational campaigns about the dangers 

of driving under the influence, are recommended. (5) Speed Management Strategies: Implementing dynamic speed limits 

based on the time of day and traffic conditions, along with stricter enforcement of existing speed regulations, can address 

the risks associated with high-speed collisions during less congested periods. These interventions and safety measures 

can significantly reduce the occurrence and impact of such incidents. Collaborative efforts among policymakers, 

transportation agencies, and the community are essential to implementing these strategies effectively and ensuring safer 

roadways for all users. 

Our study uncovered surprising insights, particularly the pronounced influence of nighttime off-peak hours on 

weekends as a significant predictor of crash severity, underscoring behavioral or environmental differences that merit 

further exploration. The substantial protective effect of barrier median roads on reducing the severity of head-on 

collisions and rollovers was unexpected, highlighting roadway infrastructure's crucial role in crash mitigation. 

Additionally, the pronounced impact of motorcycle involvement across both weekdays and weekends as a key severity 

predictor points to the need for targeted safety measures for trucks and motorcycles. These findings challenge existing 

assumptions, suggesting new research avenues and multidisciplinary intervention strategies that include vehicle 

technology, road design, and traffic management to address the complex dynamics of truck crash severity. 

Lastly, assessing the real-world impact of these interventions on reducing the severity of multivehicle-truck crashes 

and enhancing overall road safety is a critical next step. This would not only validate the theoretical contributions of the 

current research but also provide empirical evidence to guide policymakers and transportation authorities in 

implementing the most effective measures. This approach contributes further to the development of evidence-based 

strategies for improving road safety and minimizing the human and economic costs associated with multivehicle truck 

crashes. 
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