Fibers, Geopolymers, Nano and Alkali-Activated Materials for Deep Soil Mix Binders

John Kok Hee Wong, Sien Ti Kok, Soon Yee Wong

Abstract


Ordinary Portland Cement (OPC) and Lime (CaO) have traditionally been used as binder materials for Deep Soil Mix (DSM) ground improvement. Research has been conducted into possible alternatives such as pozzolans to reduce reliance on either cement or lime. However, pozzolans still undergo similar calcium-based reactions in the strengthening process. In this review, further alternative binder materials for soil strength development are explored. These recent developments include fiber reinforcement materials, alkali activation methods, nanomaterials and geopolymers, which can potentially achieve equal or improved performance. Research to date has shown that alkali-activated materials and geopolymers can be equivalent or superior alternatives to pozzolanic supplemented cement binders. The case is made for GP cements which potentially produces 80% less CO2 than conventional portland cement during manufacture. One-part AAM and GP cements are a promising substitute for portland cement in DSM. A combined approach which incorporates both Ca and alkali activated/geopolymer types of materials and hence reactions is proposed.


Keywords


Reinforcement Fibers; Nanomaterials; Alkali-Activated Materials; Geopolymers; Deep Soil Mix.

References


Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., and Zadhoush, A. “A Simple Review of Soil Reinforcement by Using Natural and Synthetic Fibers.” Construction and Building Materials, Vol. 30, 2012, pp. 100–116. doi: 10.1016/j.conbuildmat.2011.11.045.

Ghasabkolaei, N., Choobbasti, A. J., Roshan, N., and Ghasemi, S. E. “Geotechnical Properties of the Soils Modified with Nanomaterials: A Comprehensive Review.” Archives of Civil and Mechanical Engineering, Vol. 17, No. 3, 2017, pp. 639–650. doi: 10.1016/j.acme.2017.01.010.

Davidovits, J. “Geopolymers: Inorganic Polymeric New Materials.” Journal of Thermal Analysis and calorimetry, Vol. 37, No. 8, 1991, pp. 1633–1656. doi: https://doi.org/10.1007/BF01912193.

Cristelo, N., Pinto, A. T., and Glendinning, S. “Deep Soft Soil Improvement by Alkaline Activation.” Proceedings of the Institution of Civil Engineers - Ground Improvement, Vol. 164, No. 2, 2011, pp. 73–82. doi:10.1680/grim.900032.

Pourakbar, S., and Huat, B. K. “A Review of Alternatives Traditional Cementitious Binders for Engineering Improvement of Soils.” International Journal of Geotechnical Engineering, Vol. 11, No. 2, 2017, pp. 206–216. doi:10.1080/19386362.2016.1207042.

Kalantari, Behzad, and Bujang BK Huat. "Peat soil stabilization, using ordinary portland cement, polypropylene fibers, and air curing technique." Electron. J. Geotech. Eng 13 (2008): 1-13.

Sika Services AG, Concrete, T., and Rieger, C. Concrete SikaFiber Technology. Available online: https://gcc.sika.com/dms/getdocument.get/8847fefc-726e-3ff4-8487-9447d4d4c625/Concrete_SikaFiber% (accessed on 1 March 2020).

Rafalko, S. D., Brandon, T. L., Filz, G. M., and Mitchell, J. K. “Fiber Reinforcement for Rapid Stabilization of Soft Clay Soils.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 2026, 2007, pp. 21–29. doi:10.3141/2026-03.

Arasan, S., Işik, F., Akbulut, R. K., Zaimoğlu, A. S., and Nasirpur, O. “Rapid Stabilization of Sands with Deep Mixing Method Using Polyester.” Periodica Polytechnica Civil Engineering, Vol. 59, No. 3, 2015, pp. 405–411. doi:10.3311/PPci.7956.

Sukontasukkul, P., and Jamsawang, P. “Use of Steel and Polypropylene Fibers to Improve Flexural Performance of Deep Soil–Cement Column.” Construction and Building Materials, Vol. 29, 2012, pp. 201–205. doi: 10.1016/j.conbuildmat.2011.10.040.

John Paul, V., and Sneha, A. R. “Effect of Random Inclusion of Bamboo Fibers on Strength Behaviors of Fly ash Treated Black Cotton Soil.” International Journal of Civil Engineering and Technology, Vol. 7, No. 5, 2016, pp. 153–160.

Sharma, Y., Purohit, D. G. M., and Sharma, S. “Improvement of Soil Properties by Using Jute Fibre as Soil Stabilizer.” American Journal of Engineering Research, Vol. 6, No. 10, 2017, pp. 123–129.

Cai, Y., Shi, B., Ng, C. W. W., and Tang, C. “Effect of Polypropylene Fibre and Lime Admixture on Engineering Properties of Clayey Soil.” Engineering Geology, Vol. 87, No. 3–4, 2006, pp. 230–240. doi: 10.1016/j.enggeo.2006.07.007.

Estabragh, A. R., Bordbar, A. T., and Javadi, A. A. “Mechanical Behavior of a Clay Soil Reinforced with Nylon.” Geotechnical and Geological Engineering, Vol. 29, No. 5, 2011, pp. 899–908. doi:10.1007/s10706-011-9427-8.

Xiao, H. W., Lee, F. H., Zhang, M. H., and Yeoh, S. Y. Fiber Reinforced Cement Treated Clay. No. 1, Paris, 2013, pp. 2633–2636.

Rattan, A., Sachdeva, P., and Chaudhary, A. “Use of Nanomaterials in Concrete.” International Journal of Latest Research in Engineering and Technology, Vol. 2, No. 5, 2016, pp. 81–84.

Yadav, T. P., Yadav, R. M., and Singh, D. P. “Mechanical Milling: A Top down Approach for the Synthesis of Nanomaterials and Nanocomposites.” Nanoscience and Nanotechnology, Vol. 2, No. 3, 2012, pp. 22–48. doi:10.5923/j.nn.20120203.01.

Belkowitz, J. S., and Armentrout, D. An Investigation of Nano Silica in the Cement Hydration Process. Presented at the 2010 Concrete Sustainability Conference, Tempe, AZ, 2010.

Kim, J. J., Fan, T., and Taha, M. R. “Homogenization Model Examining the Effect of Nanosilica on Concrete Strength and Stiffness.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 2141, No. 1, 2010, pp. 28–35. doi:10.3141/2141-06.

Nima, F., Ali, A. A. A., and Demirboga, R. “Development of Nanotechnology in High Performance Concrete.” Advanced Materials Research, Vol. 364, 2012, pp. 115-118. Trans Tech Publications. doi: 10.4028/www.scientific.net/AMR.364.115.

Raki, L., Beaudoin, J., Alizadeh, R., Makar, J., and Sato, T. “Cement and Concrete Nanoscience and Nanotechnology.” Materials, Vol. 3, No. 2, 2010, pp. 918–942. doi:10.3390/ma3020918.

Taha, M. R. “Recent Developments in Nanomaterials for Geotechnical and Geoenvironmental Engineering.” MATEC Web of Conferences (EDP Sciences), Vol. 149, 2018, p. 02004. doi:10.1051/matecconf/201814902004.

Huang, Y., and Wang, L. “Experimental Studies on Nanomaterials for Soil Improvement: A Review.” Environmental Earth Sciences, Vol. 75, No. 497, 2016. doi:10.1007/s12665-015-5118-8.

Ribeiro, B., Botelho, E. C., Costa, M. L., and Bandeira, C. F. “Carbon Nanotube Buckypaper Reinforced Polymer Composites: A Review.” Polimeros, Vol. 27, No. 3, 2017, pp. 247–255. doi:10.1590/0104-1428.03916.

Kahidan, A., and Shirmohammadian, M. “Properties of Carbon Nanotube (CNT) Reinforced Cement.” International Journal of Engineering Research, Vol. 5, No. 6, 2016, pp. 497–503. doi:10.17950/ijer/v5s6/616.

Sáez de Ibarra, Y., Gaitero, J. J., Erkizia, E., and Campillo, I. “Atomic Force Microscopy and Nanoindentation of Cement Pastes with Nanotube Dispersions.” physica status solidi (a), Vol. 203, No. 6, 2006, pp. 1076–1081. doi:10.1002/pssa.200566166.

Cwirzen, A., Habermehl-Cwirzen, K., and Penttala, V. “Surface Decoration of Carbon Nanotubes and Mechanical Properties of Cement/Carbon Nanotube Composites.” Advances in Cement Research, Vol. 20, No. 2, 2008, pp. 65–73. doi: https://doi.org/10.1680/adcr.2008.20.2.65.

Alsharef, J. M. A., Taha, M. R., Firoozi, A. A., and Govindasamy, P. “Potential of Using Nanocarbons to Stabilize Weak Soils.” Applied and Environmental Soil Science, Vol. 2016, No. ID. 5060531, 2016, pp. 1–9. doi:10.1155/2016/5060531.

Firoozi, A. A., Olgun, G., Firoozi, A. A., and Mobasser, S. “Carbon Nanotube and Civil Engineering.” Saudi Journal of Engineering and Technology, Vol. 1, No. 1, 2016, pp. 1–4.

Taha, M. R., Alsharef, J. M. A., Al-Mansob, R. A., and Khan, T. A. “Effects of Nano-Carbon Reinforcement on the Swelling and Shrinkage Behaviour of Soil.” Sains Malaysiana, Vol. 47, No. 1, 2018, pp. 195–205. doi:10.17576/jsm-2018-4701-23.

Correia, A. A. S., and Rasteiro, M. G. Nanotechnology Applied to Chemical Soil Stabilization. In 3rd International Conference on Transportation Geotechnics (ICTG 2016), No. 143, Guimarães, Portugal, 2016, pp. 1252–1259.

Harihanandh, M., and Sivaraja, M. “Strength and Mechanical Properties of Nano Fly Ash Concrete.” International Journal of Advanced Engineering Technology, Vol. VII, No. II, 2016, pp. 596–598.

Babu, S., and Joseph, S. “Effect of Nano Materials on Properties of Soft Soil.” International Journal of Science and Research, Vol. 5, No. 9, 2016, pp. 634–637.

Singh, A., Sangita, Dr., and Singh, A. “Overview of Nanotechnology in Road Engineering.” Journal of Nano- and Electronic Physics, Vol. 7, No. 2, 2015, pp. 02004-1-02004–6.

Ali, Z. S., Shabnam, M., and Armina, S. “The Potential Use of Nanoclay to Increase Strength of Contaminated Soil.” MATEC Web of Conferences (EDP Sciences), Vol. 67, 2016, p. 02010. doi:10.1051/matecconf/20166.

Bahari, M., Nikookar, M., Arabani, M., Haghi, A. K., and Khodabandeh, H. Stabilization of Silt by Nanoclay. Presented at the 7th National Congress on Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran, 2013.

Majeed, Z. H., Taha, M. R., and Jawad, I. T. “Stabilization of Soft Soil Using Nanomaterials.” Research Journal of Applied Sciences, Engineering and Technology, Vol. 8, No. 4, 2014, pp. 503–509. doi:10.19026/rjaset.8.999.

Mohammadi, M., and Niazian, M. “Investigation of Nano-Clay Effect on Geotechnical Properties of Rasht Clay.” International Journal of Advanced Scientific and Technical Research, Vol. 3, No. 3, 2013, pp. 37–46.

Soundarya, S., Sowmya, M., Sujithra, E., and Deepak, A. “A Review on Advancements in Concrete Using Nanomaterials.” International Journal for Innovative Research in Science & Technology, Vol. 1, No. 8, 2015, pp. 208–211.

Isfahani, F. T., Redaelli, E., Lollini, F., Li, W., and Bertolini, L. “Effects of Nanosilica on Compressive Strength and Durability Properties of Concrete with Different Water to Binder Ratios.” Advances in Materials Science and Engineering, Vol. 2016, No. ID 8453567, 2016, p. 16. doi:10.1155/2016/8453567.

Prabhu, P. S., Prabu, T., and Eswaramoorthi, P. “Influence of Nano Sized Fly Ash and Cement Paste Particles on the Behaviour of Soil.” International Journal of Civil Engineering and Technology, Vol. 8, No. 9, 2017, pp. 337–344.

Khalid, N., Arshad, M. F., Mukri, M., Mohamad, K., and Kamarudin, F. “Influence of Nano-Soil Particles in Soft Soil Stabilization.” Electronic Journal of Geotechnical Eng, Vol. 20, No. Bund. 2, 2015, pp. 731–738.

Bahmani, S. H., Farzadnia, N., Asadi, A., and Huat, B. B. K. “The Effect of Size and Replacement Content of Nanosilica on Strength Development of Cement Treated Residual Soil.” Construction and Building Materials, Vol. 118, 2016, pp. 294–306. doi: 10.1016/j.conbuildmat.2016.05.075.

Bahmani, S. H., Huat, B. B. K., Asadi, A., and Nima, F. “Stabilization of Residual Soil Using SiO2 Nanoparticles and Cement.” Construction and Building Materials, Vol. 64, 2014, pp. 350–359. doi: 10.1016/j.conbuildmat.2014.04.086.

Changizi, F., and Haddad, A. “Improving the Geotechnical Properties of Soft Clay with Nano-Silica Particles.” Proceedings of the Institution of Civil Engineers - Ground Improvement, Vol. 170, No. 2, 2017, pp. 62–71. doi:10.1680/jgrim.15.00026.

Changizi, F., and Haddad, A. “Effect of Nano-SiO2 on the Geotechnical Properties of Cohesive Soil.” Geotechnical and Geological Eng, Vol. 34, No. 2, 2016, pp. 725–733. doi:10.1007/s10706-015-9962-9.

Choobbasti, A. J., and Kutanaei, S. S. “Microstructure Characteristics of Cement-Stabilized Sandy Soil Using Nanosilica.” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 9, No. 5, 2017, pp. 981–988. doi: 10.1016/j.jrmge.2017.03.015.

Lin, D.-F., Luo, H.-L., Hsiao, D.-H., Chen, C.-T., and Cai, M.-D. “Enhancing Soft Subgrade Soil with a Sewage Sludge Ash/Cement Mixture and Nano-Silicon Dioxide.” Environmental Earth Sciences, Vol. 75, No. 7, 2016, p. 619. doi:10.1007/s12665-016-5432-9.

Wikipedia contributors. Aluminium Oxide Nanoparticle. Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/w/index.php?title=Aluminium_oxide_nanoparticle&oldid=844136919 (accessed on 10 March 2020).

Nazari, A., Riahi, S., Riahi, S., Shamekhi, S. F., and Khademno, A. “Mechanical Properties of Cement Mortar with Al2O3 Nanoparticles.” Journal of American Science, Vol. 6, No. 4, 2010, pp. 94–97.

León, N., Massana, J., Alonso, F., Moragues, A., and Sánchez-Espinosa, E. “Effect of Nano-Si2O and Nano-Al2O3 on Cement Mortars for Use in Agriculture and Livestock Production.” Biosystems Engineering, Vol. 123, 2014, pp. 1–11. doi: 10.1016/j.biosystemseng.2014.04.009.

Stefanidou, M., Tsardaka, E.-C., and Pavlidou, E. “Influence of Nano-Silica and Nano-Alumina in Lime-Pozzolan and Lime-Metakaolin Binders.” Materials Today: Proceedings, Vol. 4, No. 7, Part 1, 2017, pp. 6908–6922. doi: 10.1016/j.matpr.2017.07.020.

Naval, S., and Chandan, K. Stabilization of Expansive Soil Using Nanomaterials. Singapore, 2017.

Luo, H.-L., Hsiao, D.-H., Lin, D.-F., and Lin, C.-K. “Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminium Oxide.” International Journal of Transportation Science and Technology, Vol. 1, No. 1, 2012, pp. 83–99. doi:10.1260/2046-0430.1.1.83.

Eswaramoorthi, P., Senthil, V., Kumar, P., Sachin Prabu, P., Prabu, T., and Lavanya, S. “Influence Of Nanosized Silica and Lime Particles On The Behaviour Of Soil.” International Journal of Civil Engineering and Technology, Vol. 8, No. 9, 2017, pp. 353–360.

Wang, T., Wang, C., Zhang, Z., and Huang, X. “Mechanical Property of Cement-Stabilized Soil with Nano-CaO and Reinforcement Mechanism Analysis.” Chemical Engineering Transactions, Vol. 51, 2016, pp. 1195–1200. doi:10.3303/CET1651200.

Govindasamy, P., Taha, M. R., Alsharef, J., and Ramalingam, K. “Influence of Nano Lime and Curing Period on Unconfined Compressive Strength of Soil.” Applied and Environmental Soil Science, Vol. 2017, No. ID 8307493, 2017, p. 9. doi:10.1155/2017/8307493.

Pacheco-Torgal (2008a), F., Castro-Gomes, J., and Jalali, S. “Alkali-Activated Binders: A Review. Part 1. Historical Background, Terminology, Reaction Mechanisms and Hydration Products.” Construction and Building Materials, Vol. 22, No. 7, 2008, pp. 1305–1314. doi: 10.1016/j.conbuildmat.2007.10.015.

Pacheco-Torgal (2008b), F., Castro-Gomes, J., and Jalali, S. “Alkali-Activated Binders: A Review. Part 2. About Materials and Binders Manufacture.” Construction and Building Materials, Vol. 22, No. 7, 2008, pp. 1315–1322. doi: 10.1016/j.conbuildmat.2007.03.019.

Pourakbar, S., Huat, B. B. K., Asadi, A., and Fasihnikoutalab, M. H. “Model Study of Alkali-Activated Waste Binder for Soil Stabilization.” International Journal of Geosynthetics and Ground Engineering, Vol. 2:35, 2016. doi:10.1007/s40891-016-0075-1.

Torres-Carrasco, M., and Puertas, F. “Alkaline Activation of Different Aluminosilicates as an Alternative to Portland Cement: Alkali Activated Cements or Geopolymers.” Revista Ingeniería de Construcción [online], Vol. 32, No. 2, 2017, pp. 5–12. doi:10.4067/S0718-50732017000200001.

Weng, L., and Sagoe-Crentsil, K. “Dissolution Processes, Hydrolysis and Condensation Reactions during Geopolymer Synthesis: Part I—Low Si/Al Ratio Systems.” Journal of Materials Science, Vol. 42, No. 9, 2007, pp. 2997–3006. doi:10.1007/s10853-006-0820-2.

Sagoe-Crentsil, K., and Weng, L. “Dissolution Processes, Hydrolysis and Condensation Reactions during Geopolymer Synthesis: Part II. High Si/Al Ratio Systems.” Journal of Materials Science, Vol. 42, No. 9, 2007, pp. 3007–3014. doi:10.1007/s10853-006-0818-9.

Škvára, František. Alkali Activated Materials Or Geopolymers, 661-682. Available online: http://www.geopolymery.eu/aitom/upload/documents/publikace/2007/2007_praha_skvara.pdf (accessed on 15 March 2020).

Palomo, A., Grutzeck, M. W., and Blanco, M. T. “Alkali-Activated Fly Ashes: A Cement for the Future.” Cement and Concrete Research, Vol. 29, No. 8, 1999, pp. 1323–1329. doi:10.1016/S0008-8846(98)00243-9.

Steveson (2005a), M., and Sagoe-Crentsil, K. “Relationships between Composition, Structure and Strength of Inorganic Polymers. Part I Metakaolin-Derived Inorganic Polymers.” Journal of Materials Science, Vol. 40, No. 8, 2005, pp. 2023–2036. doi:10.1007/s10853-005-1226-2.

Steveson (2005b), M., and Sagoe-Crentsil, K. “Relationships between Composition, Structure and Strength of Inorganic Polymers. Part 2 Fly Ash-Derived Inorganic Polymers.” Journal of Materials Science, Vol. 40, No. 16, 2005, pp. 4247–4259. doi:10.1007/s10853-005-2794-x.

Moayedi, H., Huat, B. B. K., Kazemian, S., and Daneshmand, S. “Stabilization of Organic Soil Using Sodium Silicate System Grout.” International Journal of Physical Sciences, Vol. 7, No. 8, 2012, pp. 1395–1402. doi:10.5897/IJPS11.1509.

Cristelo, N., Glendinning, S., Fernandes, L., and Pinto, A. T. “Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilisation.” Acta Geotechnica, Vol. 8, No. 4, 2013, pp. 395–405. doi:10.1007/s11440-012-0200-9.

Rios, S., Cristelo, N., Viana da Fonseca, A., and Ferreira, C. “Structural Performance of Alkali-Activated Soil Ash versus Soil Cement.” Journal of Materials in Civil Engineering, Vol. 28, No. 2, 2016, p. 04015125. doi:10.1061/(ASCE)MT.1943-5533.0001398.

Rios, S., Cristelo, N., Viana da Fonseca, A., and Ferreira, C. “Stiffness Behavior of Soil Stabilized with Alkali-Activated Fly Ash from Small to Large Strains.” International Journal of Geomechanics, Vol. 17, No. 3, 2017, p. 04016087. doi:10.1061/(ASCE)GM.1943-5622.0000783.

Sargent, P., Hughes, P. N., Rouainia, M., and White, M. L. “The Use of Alkali Activated Waste Binders in Enhancing the Mechanical Properties and Durability of Soft Alluvial Soils.” Engineering Geology, Vol. 152, No. 1, 2013, pp. 96–108. doi: 10.1016/j.enggeo.2012.10.013.

Provis, J. L. “Alkali-Activated Materials.” Cement and Concrete Research, Vol. 114, 2018, pp. 40–48. doi: 10.1016/j.cemconres.2017.02.009.

Luukonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., and Illikainen, M. “One-Part Alkali-Activated Materials: A Review.” Cement and Concrete Research, Vol. 103, 2018, pp. 21–34. doi: 10.1016/j.cemconres.2017.10.001.

Vitale, E., Russo, G., Dell’Agli, G., Ferone, C., and Bartolomeo, C. “Mechanical Behaviour of Soil Improved by Alkali Activated Binders.” Environments, Vol. 4, No. 4, 2017, p. 80. doi:10.3390/environments4040080.

Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., and van Deventer, J. S. J. “Geopolymer Technology: The Current State of the Art.” Journal of Materials Science, Vol. 42, No. 9, 2007, pp. 2917–2933. doi:10.1007/s10853-006-0637-z.

Feng, D., Tan, H., and van Deventer, J. S. J. “Ultrasound Enhanced Geopolymerisation.” Journal of Materials Science, Vol. 39, No. 2, 2004, pp. 571–580. doi:10.1023/B: JMSC.0000011513.87316.5c.

Usha, S., Nair, D. G., and Vishnudas, S. “Stabilization of Organic Soils with Fly Ash.” International Journal of Civil Engineering &Technology, Vol. 5, No. 12, 2014, pp. 219–225.

Bhutta, M. A. R., Hussin, W. M., Azreen, Mohd., and Tahir, M. Mohd. “Sulphate Resistance of Geopolymer Concrete Prepared from Blended Waste Fuel Ash.” Journal of Materials in Civil Engineering, Vol. 26, No. 11, 2014, p. 04014080. doi:10.1061/(ASCE)MT.1943-5533.0001030.

Du, Y.-J., Yu, B.-W., Liu, K., and Jiang, N.-J. “Physical, Hydraulic, and Mechanical Properties of Clayey Soil Stabilized by Lightweight Alkali-Activated Slag Geopolymer.” Journal of Materials in Civil Engineering, Vol. 29, No. 2, 2017, p. 04016217. doi:10.1061/(ASCE)MT.1943-5533.0001743.

Singhi, B., Laskar, A. I., and Ahmed, M. A. “Investigation on Soil–Geopolymer with Slag, Fly Ash and Their Blending.” Arabian Journal for Science and Engineering, Vol. 41, No. 2, 2016, pp. 393–400. doi:10.1007/s13369-015-1677-y.

Zhang, M., Guo, H., El-Korchi, T., Zhang, G., and Tao, M. “Experimental Feasibility Study of Geopolymer as the Next-Generation Soil Stabilizer.” Construction and Building Materials, Vol. 47, 2013, pp. 1468–1478. doi: 10.1016/j.conbuildmat.2013.06.017.

Al Bakri Abdullah, M. M., Liew, Y. M., Heah, C. Y., and Mohd Tahir, M. F. Clay-Based Materials in Geopolymer Technology. In Cement Based Materials, IntechOpen. doi: 10.5772/intechopen.74438

Davidovits, J. Why Alkali-Activated Materials (AAM) Are Not Geopolymers. Publication Technical Paper #25. Geopolymer Institute Library, 2018, p. doi: 10.13140/RG.2.2.34337.25441.

Wikipedia Contributors. Geopolymer Cement. Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Geopolymer_cement (accessed on 23 March 2020).

Davidovits, J. “Global Warming Impact on the Cement and Aggregate Industries.” World Resources Review, Vol. 6, No. 2, 1994, pp. 263–278.

Wattanachai, P., and Suwan, T. “Strength of Geopolymer Cement Curing at Ambient Temperature by Non-Oven Curing Approaches: An Overview.” IOP Conference Series: Materials Science and Engineering, Vol. 212, No. 1, 2017, p. 012014. doi:10.1088/1757-899X/212/1/012014.


Full Text: PDF

DOI: 10.28991/cej-2020-03091511

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 John Kok Hee Wong, Sien Ti Kok, Soon Yee Wong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message