A Material Model Approach on the Deflection and Crack Pattern in Different Panels of the RCC Flat Plate using Finite Element Analysis

M. P. Priya, M. P. Priya, A. S. Santhi


Three reinforced cement concrete (RCC) flat plate panels, namely interior, edge, and corner panels, were considered for evaluating the deflection and crack development from the column. In this study, a numerical analysis was conducted for a steel fibre-reinforced flat plate with steel fibre volumes of 0.3% and 0.4%. The study was conducted on real- and scaled-sized flat plates. We used the ABAQUS software to model and evaluate the deflection and crack patterns. An experimental study was conducted on the scaled-sized specimens to validate the finite element analysis (FEA) results. This study presents the punching shear behaviour of various panels of a flat plate with and without steel fibres. The deflection values obtained from the FEA and experiment were compared, and we found that the interior panel exhibited better results when compared to edge and corner panels. A minimum of three sided support is preferred for the stability of a larger-sized flat plate. The interior panels provided better strength and load-bearing capacity when compared to edge and corner panels. Crack patterns for different panels of a flat plate with different steel fibre volumes were analysed by comparing the FEA and experimental results. The development of cracks moved away from the column face on addition of steel fibres and changed its brittle nature. The results indicate that the crack developed from the column face is away from the critical distance d/2 from the slab-column junction (specimens with fibre), further demonstrating the stability of the structure.


Doi: 10.28991/CEJ-2022-08-03-05

Full Text: PDF


RCC Flat Plate; Steel Fibers; Punching Shear; ABAQUS; Deflection; Crack Pattern.


Erberik, M. A., & Elnashai, A. S. (2004). Fragility analysis of flat-slab structures. Engineering Structures, 26(7), 937–948. doi:10.1016/j.engstruct.2004.02.012.

Kueres, D., Siburg, C., Herbrand, M., Classen, M., & Hegger, J. (2017). Uniform Design Method for punching shear in flat slabs and column bases. Engineering Structures, 136, 149–164. doi:10.1016/j.engstruct.2016.12.064.

Bhavikatti, S.S. (2016). Advanced RCC Design, Second Edition. New Age International, New Delhi, India.

Gouveia, N. D., Fernandes, N. A. G., Faria, D. M. V., Ramos, A. M. P., & Lúcio, V. J. G. (2014). SFRC flat slabs punching behaviour - Experimental research. Composites Part B: Engineering, 63, 161–171. doi:10.1016/j.compositesb.2014.04.005.

Elstner, R. C., & Hognestad, E. (1956). Shearing Strength of Reinforced Concrete Slabs. ACI Journal Proceedings, 53(7), 29–58. doi:10.14359/11501.

Moe, J. (1961). Shearing strength of reinforced concrete slabs and footings under concentrated loads. Portland Cement Association, Research and Development Laboratories, Skokie, Illinois, United States.

Pilakoutas, K., & Li, X. (2003). Alternative Shear Reinforcement for Reinforced Concrete Flat Slabs. Journal of Structural Engineering, 129(9), 1164–1172. doi:10.1061/(asce)0733-9445(2003)129:9(1164).

Lapi, M., Ramos, A. P., & Orlando, M. (2019). Flat slab strengthening techniques against punching-shear. Engineering Structures 180(2019), 160–180. doi:10.1016/j.engstruct.2018.11.033.

Viswanathan, T. S., Ganesh, G. M., & Santhi, A. S. (2012). Shear stress distribution of flat-plate using Finite Element Analysis. International Journal of Civil & Structural Engineering, 2(3), 914-923. doi: 10.6088/ijcser.00202030019.

Viswanathan, T. S., Mohan Ganesh, G., & Santhi, A. S. (2014). Investigation of shear stud performance in flat plate using finite element analysis. Journal of Engineering and Technological Sciences, 46(3), 328–341. doi:10.5614/j.eng.technol.sci.2014.46.3.7.

Subramanian, N. (2005). Evaluation and enhancing the punching shear resistance of flat slabs using HSC. Indian Concrete Journal, 79(4), 31–37.

Qian, K., & Li, B. (2013). Experimental study of drop-panel effects on response of reinforced concrete flat slabs after loss of corner column. ACI Structural Journal, 110(2), 319–329. doi:10.14359/51684411.

Cheng, M. Y., & Parra-Montesinos, G. J. (2010). Evaluation of steel fiber reinforcement for punching shear resistance in slab-column connections- part I: Monotonically increased load. ACI Structural Journal, 107(1), 101–109. doi:10.14359/51663394.

Anita Jessie, J., & Santhi, A. S. (2019). Flexural behaviour of steel fibre reinforced concrete at elevated temperatures using abaqus. Revista Romana de Materiale/ Romanian Journal of Materials, 49(3), 409–415.

Barros, J. A. O., & Figueiras, J. A. (1999). Flexural Behavior of SFRC: Testing and Modeling. Journal of Materials in Civil Engineering, 11(4), 331–339. doi:10.1061/(asce)0899-1561(1999)11:4(331).

Tegos, J., & Tsonos, A. (1996). Punching strength decay of slab-column connections under seismic loading. In Eleventh World Conference on Earthquake Engineering. Acapulco, Mexico.

Nguyen-Minh, L., RovňÁk, M., Tran-Quoc, T., & Nguyen-Kim, K. (2011). Punching shear resistance of steel fiber reinforced concrete flat slabs. Procedia Engineering, 14, 1830–1837. doi:10.1016/j.proeng.2011.07.230.

Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673. doi:10.1016/j.conbuildmat.2004.04.027.

Maya, L. F., Fernández Ruiz, M., Muttoni, A., & Foster, S. J. (2012). Punching shear strength of steel fibre reinforced concrete slabs. Engineering Structures, 40, 83–94. doi:10.1016/j.engstruct.2012.02.009.

Shaaban, A. M., & Gesund, H. (1994). Punching shear strength of steel fiber reinforced concrete flat plates. ACI Structural Journal, 91(4), 406–414. doi:10.14359/4145.

Tan, K. H., & Venkateshwaran, A. (2019). Punching shear in steel fiber-reinforced concrete slabs with or without traditional reinforcement. ACI Structural Journal, 116(3), 107–118. doi:10.14359/51713291.

Zamri, N. F., Mohamed, R. N., & Awalluddin, D. (2020). The experimental studies of punching shear behaviour of reinforced concrete flat slab with the inclusion of steel fibre: Overview. In IOP Conference Series: Materials Science and Engineering (Vol. 849, Issue 1, p. 849). Materials Science and Engineering. doi:10.1088/1757-899X/849/1/012087.

Genikomsou, A. S., & Polak, M. A. (2015). Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 98, 38–48. doi:10.1016/j.engstruct.2015.04.016.

Chavan, G. R., & Dr. Tande, S. N. (2016). Analysis and Design of Flat Slab. International Journal of Latest Trends in Engineering & Technology, 7(1), 133–138. doi:10.21172/1.71.018.

Setiawan, A., Vollum, R. L., Macorini, L., & Izzuddin, B. A. (2020). Punching shear design of RC flat slabs supported on wall corners. Structural Concrete, 21(3), 859–874. doi:10.1002/suco.201900514.

Wahalathantri, B., Thambiratnam, D., Chan, T., & Fawzia, S. (2011). A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. Proceedings of the first international conference on engineering, designing and developing the built environment for sustainable wellbeing. Queensland University of Technology, Queensland, Australia.

Abbas, A. M., Hussain, H. K., & Saadoon, A. S. (2019). Non-linear analysis to improve punching shear strength in flat slab using z-shape shear reinforcement. Muthanna Journal of Engineering and Technology, 7(1). doi:10.52113/3/mjet/2019-7-1/65-70.

Khan, Q. uz Z., Ali, M., Ahmad, A., Raza, A., & Iqbal, M. (2021). Experimental and finite element analysis of hybrid fiber reinforced concrete two-way slabs at ultimate limit state. SN Applied Sciences, 3(1). doi:10.1007/s42452-020-04078-y.

Abdul Rasoul, Z. M. R., & Taher, H. M. A. M. (2019). Accuracy of concrete strength prediction behavior in simulating punching shear behavior of flat slab using finite element approach in abaqus. Periodicals of Engineering and Natural Sciences, 7(4), 1933–1949. doi:10.21533/pen.v7i4.943.

ABAQUS 6.12. (2012). “ABAQUS/CAE User's Manual”. Dassault Systèmes Simulia Corp., Providence, RI, USA. Available online: (accessed on December 2021).

Indian Standard: IS 456. (2000). Indian Standard Code of Practice for Guidelines for Plain and Reinforced Concrete. Bureau of Indian Standards, New Delhi, India.

Indian Standard: IS 10262. (2000). Indian Standard Code of Practice for Concrete Mix Proportioning. Bureau of Indian Standards, New Delhi, India.

Varghese, P.C. (2010). Advanced Reinforced Concrete Design, Second Edition. Prentice Hall of India, New Delhi, India.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-03-05


  • There are currently no refbacks.

Copyright (c) 2022 santhi A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.