Moment Redistribution of Shear-Critical GFRP Reinforced Continuously Supported Slender Beams
Downloads
Doi: 10.28991/CEJ-SP2021-07-02
Full Text: PDF
Downloads
[2] Habeeb, M. N., & Ashour, A. F. (2008). Flexural Behavior of Continuous GFRP Reinforced Concrete Beams. Journal of Composites for Construction, 12(2), 115–124. doi:10.1061/(asce)1090-0268(2008)12:2(115).
[3] Gravina, R. J., & Smith, S. T. (2008). Flexural behaviour of indeterminate concrete beams reinforced with FRP bars. Engineering Structures, 30(9), 2370–2380. doi:10.1016/j.engstruct.2007.12.019.
[4] Kara, I. F., & Ashour, A. F. (2013). Moment redistribution in continuous FRP reinforced concrete beams. Construction and Building Materials, 49, 939–948. doi:10.1016/j.conbuildmat.2013.03.094.
[5] Santos, P., Laranja, G., França, P. M., & Correia, J. R. (2013). Ductility and moment redistribution capacity of multi-span T-section concrete beams reinforced with GFRP bars. Construction and Building Materials, 49, 949–961. doi:10.1016/j.conbuildmat.2013.01.014.
[6] El-Mogy, M., El-Ragaby, A., & El-Salakawy, E. (2013). Experimental testing and finite element modeling on continuous concrete beams reinforced with fibre reinforced polymer bars and stirrups. Canadian Journal of Civil Engineering, 40(11), 1091–1102. doi:10.1139/cjce-2012-0509.
[7] Mahmoud, K., & El-Salakawy, E. (2016). Effect of Transverse Reinforcement Ratio on the Shear Strength of GFRP-RC Continuous Beams. Journal of Composites for Construction, 20(1), 04015023. doi:10.1061/(asce)cc.1943-5614.0000583.
[8] El-Mogy, M., El-Ragaby, A., & El-Salakawy, E. (2010). Flexural Behavior of Continuous FRP-Reinforced Concrete Beams. Journal of Composites for Construction, 14(6), 669–680. doi:10.1061/(asce)cc.1943-5614.0000140.
[9] El-Mogy, M., El-Ragaby, A., & El-Salakawy, E. (2011). Effect of Transverse Reinforcement on the Flexural Behavior of Continuous Concrete Beams Reinforced with FRP. Journal of Composites for Construction, 15(5), 672–681. doi:10.1061/(asce)cc.1943-5614.0000215.
[10] Szczech, D., & Kotynia, R. (2021). Effect of shear reinforcement ratio on the shear capacity of GFRP reinforced concrete beams. Archives of Civil Engineering, 67(1), 425–437. doi:10.24425/ace.2021.136481.
[11] Shehata, E. F. G., (1999) "Fibre-Reinforced Polymer (FRP) for Shear Reinforcement in Concrete Prisms.,” Ph.D. Thesis, Department of Civil and Geological Engineering. University of Manitoba, Winnipeg, Manitoba.
[12] Ahmed, E. A., El-Salakawy, E. F., & Benmokrane, B. (2010). Performance Evaluation of Glass Fiber-Reinforced Polymer Shear Reinforcement for Concrete Beams. ACI structural Journal, 107(1). https://doi.org/10.14359/51663388.
[13] ACI Committee. (2015). Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars (ACI 440. 1R-15). Farmington Hills, Michigan: American Concrete Institute.
[14] Standard, C. S. A. (2002). Design and construction of building components with fibre-reinforced polymers. S806-02, Canadial Standards Association.
[15] Abushanab, A., & Alnahhal, W. (2021). Numerical parametric investigation on the moment redistribution of basalt FRC continuous beams with basalt FRP bars. Composite Structures, 277, 114618. doi:10.1016/j.compstruct.2021.114618.
[16] Araba, A. M., & Ashour, A. F. (2018). Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams. Composites Part B: Engineering, 154, 321–336. doi:10.1016/j.compositesb.2018.08.077.
[17] BaŠ¡a, N., Ulićević, M., & Zejak, R. (2018). Experimental research of continuous concrete beams with GFRP reinforcement. Advances in Civil Engineering, 2018, 1–16. doi:10.1155/2018/6532723.
[18] ANSYS. (2007). A Finite element computer software and user manual for nonlinear structural analysis. Mechanical APDL Release 18.1 UP20170403.
[19] Mahmoud, K. A., (2015). Shear Behaviour of Continuous Concrete Beams. PhD, Winnipeg: The University of Manitoba., Canada.
[20] MagGregor, J. G. (1997). Reinforced Mechanics and Design. Pearson Education Inc.
[21] Wolanski, A. J. (2004). Flexural behavior of reinforced and prestressed concrete beams using finite element analysis, Doctoral dissertation, Marquette University, Wisconsin, USA.
[22] Diab, H., Khaled, T., & Rashwan, M. (2021). Flexural behavior of RC continuous T-beams reinforced with hybrid CFRP/ steel bars (experimental and numerical study). JES. Journal of Engineering Sciences, 49(2), 215–248. doi:10.21608/jesaun.2021.64888.1034.
[23] Alves, J., El-Ragaby, A., & El-Salakawy, E. (2011). Durability of GFRP Bars' Bond to Concrete under Different Loading and Environmental Conditions. Journal of Composites for Construction, 15(3), 249–262. doi:10.1061/(asce)cc.1943-5614.0000161.
[24] Oller, E., Marí, A., Bairán, J. M., & Cladera, A. (2015). Shear design of reinforced concrete beams with FRP longitudinal and transverse reinforcement. Composites Part B: Engineering, 74, 104–122. doi:10.1016/j.compositesb.2014.12.031.
[25] Tahenni, T., Bouziadi, F., Boulekbache, B., & Amziane, S. (2021). Experimental and nonlinear finite element analysis of shear behaviour of reinforced concrete beams. Structures, 29, 1582–1596. doi:10.1016/j.istruc.2020.12.043.
[26] Hussein, L. F., Khattab, M. M., & Farman, M. S. (2021). Experimental and finite element studies on the behavior of hybrid reinforced concrete beams. Case Studies in Construction Materials, 15, 607. doi:10.1016/j.cscm.2021.e00607.
[27] Razaqpur, A. G., & Spadea, S. (2015). Shear Strength of FRP Reinforced Concrete Members with Stirrups. Journal of Composites for Construction, 19(1), 04014025. doi:10.1061/(asce)cc.1943-5614.0000483.
[28] Lou, T., Lopes, S. M. R., & Lopes, A. V. (2015). Neutral axis depth and moment redistribution in FRP and steel reinforced concrete continuous beams. Composites Part B: Engineering, 70, 44–52. doi:10.1016/j.compositesb.2014.10.044.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.