Numerical Modeling for the Effect of Soil Type on Stability of Embankment

Marwan Adil Hassan, Mohd Ashraf Mohamad Ismail, Heyam Hussein Shaalan

Abstract


Dike construction has been widely used because of its potential to protect people and properties from overtopping flows. Water levels may exceed a dike crest and cause overtopping flow during high river discharge. This phenomenon has caused serious damage to the dike body due to the reduction of soil shear strength. The increase of water content within particles and its relationship with the development of breach channel failure in downstream and upstream slopes are affected by a series of geotechnical and hydraulic aspects. Transient seepage and slope stability analyses (FOS) were performed in this study using 2D finite element methods and time-history measurements under the effect of sandy and very silty sand soils. The numerical model of SLIDE 2018 was limited by its inability to incorporate all physical processes governing an overtopping breach failure. Numerical analyses were performed to simulate the development of pore pressures and water content at six positions in the dike’s upstream and downstream slopes in physical experimental tests using the van Genuchten Equation and the limit equilibrium method. The numerical results revealed that fine particles increase the pore water pressure and reduce the FOS. Appropriate dike design and maintenance are dependent on surrounding hydraulic conditions, dimensions, and soil types. Non-cohesive materials with fine particles were preferable.

 

Doi: 10.28991/CEJ-SP2021-07-04

Full Text: PDF


Keywords


Dike; Pore Pressure; Volumetric Content; Factor of Safety; Overtopping; Dike.

References


Adil Hassan, M., & Mohd Ismail, M. A. (2017). Literature Review for the Development of Dike’S Breach Channel Mechanism Caused by Erosion Processes during Overtopping Failure. Engineering Heritage Journal, 1(2), 23–30. doi:10.26480/gwk.02.2017.23.30.

Liang, D., Zhao, X., & Soga, K. (2020). Simulation of overtopping and seepage induced dike failure using two-point MPM. Soils and Foundations, 60(4), 978–988. doi:10.1016/j.sandf.2020.06.004.

Schmitz, V., Erpicum, S., El kadi Abderrezzak, K., Rifai, I., Archambeau, P., Pirotton, M., & Dewals, B. (2021). Overtopping-Induced Failure of Non–Cohesive Homogeneous Fluvial Dikes: Effect of Dike Geometry on Breach Discharge and Widening. Water Resources Research, 57(7). doi:10.1029/2021WR029660.

Kakinuma, T., & Shimizu, Y. (2014). Large-Scale Experiment and Numerical Modeling of a Riverine Levee Breach. Journal of Hydraulic Engineering, 140(9), 04014039. doi:10.1061/(asce)hy.1943-7900.0000902.

Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000–1024. doi:10.1139/t00-030.

van Bergeijk, V. M., Warmink, J. J., & Hulscher, S. J. M. H. (2020). Modelling the wave overtopping flow over the crest and the landward slope of grass-covered flood defenses. Journal of Marine Science and Engineering, 8(7). doi:10.3390/JMSE8070489.

Scheres, B., & Schüttrumpf, H. (2020). Investigating the erosion resistance of different vegetated surfaces for ecological enhancement of sea dikes. Journal of Marine Science and Engineering, 8(7), 10 3390 8070519. doi:10.3390/JMSE8070519.

Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517. doi:10.1038/415514a.

Khaddor, I., Achab, M., Soumali, M. R., Benjbara, A., & Alaoui, A. H. (2021). The Impact of the Construction of a Dam on Flood Management. Civil Engineering Journal, 7(2), 343–356. doi:10.28991/cej-2021-03091658.

Froehlich, D. C. (2008). Embankment Dam Breach Parameters and Their Uncertainties. Journal of Hydraulic Engineering, 134(12), 1708–1721. doi:10.1061/(asce)0733-9429(2008)134:12(1708).

Xu, Y., & Zhang, L. M. (2009). Breaching Parameters for Earth and Rockfill Dams. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1957–1970. doi:10.1061/(asce)gt.1943-5606.0000162.

Powledge, G. R., & Dodge, R. A. (1985). Overtopping of Small Dams - an Alternative for Dam Safety. Proceeding of Specialty Conference, Hydraulics and Hydrology in the Small Computer Age, 1071–1076.

Powledge, G. R., Ralston, D. C., Miller, P., Chen, Y. H., Clopper, P. E., & Temple, D. M. (1989). Mechanics of overflow erosion on embankments. I: Research activities. Journal of Hydraulic Engineering, 115(8), 1040-1055. doi: 0.1061/(ASCE)0733-9429(1989)115:8(1040).

Powledge, G. R., Ralston, D. C., Miller, P., Chen, Y. H., Clopper, P. E., & Temple, D. M. (1989). Mechanics of Overflow Erosion on Embankments. II: Hydraulic and Design Considerations. Journal of Hydraulic Engineering, 115(8), 1056–1075. doi:10.1061/(asce)0733-9429(1989)115:8(1056).

Coleman, S. E., Andrews, D. P., & Webby, M. G. (2002). Overtopping Breaching of Noncohesive Homogeneous Embankments. Journal of Hydraulic Engineering, 128(9), 829–838. doi:10.1061/(asce)0733-9429(2002)128:9(829).

Rozov, A. L. (2003). Modeling of washout of dams. Journal of Hydraulic Research, 41(6), 565-577. doi: 10.1080/00221680309506889.

Chinnarasri, C., Jirakitlerd, S., & Wongwises, S. (2004). Embankment dam breach and its outflow characteristics. Civil Engineering and Environmental Systems, 21(4), 247–264. doi:10.1080/10286600412331328622.

Schmocker, L., & Hager, W. H. (2009). Modelling dike breaching due to overtopping. Journal of Hydraulic Research, 47(5), 585–597. doi:10.3826/jhr.2009.3586.

Hassan, M. A., & Ismail, M. A. M. (2017). Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests. AIP Conference Proceedings, 1892. doi:10.1063/1.5005675.

Hassan, M., & Ismail, M. A. (2018). Influence of dike slope on the development of infiltration water and erosion processes during overtopping tests. International Journal of Engineering & Technology, 7(2.14), 520. doi:10.14419/ijet.v7i2.9308.

Verbrugghe, T., Domínguez, J. M., Crespo, A. J. C., Altomare, C., Stratigaki, V., Troch, P., & Kortenhaus, A. (2018). Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions. Coastal Engineering, 138(doi:10.1016/j), 184–198. doi:10.1016/j.coastaleng.2018.04.021.

van Bergeijk, V. M., Warmink, J. J., Frankena, M., & Hulscher, S. J. M. H. (2019). Modelling Dike Cover Erosion by Overtopping Waves: The Effects of Transitions. In Hydraulic Engineering Repository, 1097–1106. doi:10.18451/978-3-939230-64-9_110.

Van der Meer, J. W., Hardeman, B., Steendam, G. J., Schuttrumpf, H., & Verheij, H. (2011). Flow Depths and Velocities at Crest and Landward Slope of a Dike, in Theory and With the Wave Overtopping Simulator. In Coastal Engineering Proceedings (Vol. 1, Issue 32, p. 10). doi:10.9753/icce.v32.structures.10.

Chen, W., Warmink, J. J., van Gent, M. R. A., & Hulscher, S. J. M. H. (2021). Numerical modelling of wave overtopping at dikes using OpenFOAM®. Coastal Engineering, 166(9). doi:10.1016/j.coastaleng.2021.103890.

Li, L. C., Tang, C. A., Zhu, W. C., & Liang, Z. Z. (2009). Numerical analysis of slope stability based on the gravity increase method. Computers and Geotechnics, 36(7), 1246–1258. doi:10.1016/j.compgeo.2009.06.004.

Neves, M. G., Didier, E., Brito, M., & Clavero, M. (2021). Numerical and physical modelling of wave overtopping on a smooth impermeable dike with promenade under strong incident waves. Journal of Marine Science and Engineering, 9(8), 10 3390 9080865. doi:10.3390/jmse9080865.

Talukdar, P., & Dey, A. (2019). Hydraulic failures of earthen dams and embankments. Innovative Infrastructure Solutions, 4(1). doi:10.1007/s41062-019-0229-9.

van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892–898. doi:10.2136/sssaj1980.03615995004400050002x.

Sisson, J. B., & van Genuchten, M. T. (1991). An improved analysis of gravity drainage experiments for estimating the unsaturated soil hydraulic functions. Water Resources Research, 27(4), 569–575. doi:10.1029/91WR00184.

Tsaparas, I., Rahardjo, H., Toll, D. G., & Leong, E. C. (2002). Controlling parameters for rainfall-induced landslides. Computers and Geotechnics, 29(1), 1–27. doi:10.1016/S0266-352X(01)00019-2.

Alkasawneh, W., Husein Malkawi, A. I., Nusairat, J. H., & Albataineh, N. (2008). A comparative study of various commercially available programs in slope stability analysis. Computers and Geotechnics, 35(3), 428–435. doi:10.1016/j.compgeo.2007.06.009.

Cheng, Y. M., Lansivaara, T., & Wei, W. B. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, 34(3), 137–150. doi:10.1016/j.compgeo.2006.10.011.

Al-Riffai, M., & Nistor, I. (2013). Influence of Seepage on the Erodibility of Overtopped Noncohesive Embankments. 21st Canadian Hydrotechnical Conference, May 2013, 1–10.

Kuriqi, A., Ardiçlioglu, M., & Muceku, Y. (2016). Investigation of seepage effect on river dike’s stability under steady state and transient conditions. Pollack Periodica, 11(2), 87–104. doi:10.1556/606.2016.11.2.8.

Basack, S., Goswami, G., Khabbaz, H., Karakouzian, M., Baruah, P., & Kalita, N. (2021). A Comparative Study on Soil Stabilization Relevant to Transport Infrastructure using Bagasse Ash and Stone Dust and Cost Effectiveness. Civil Engineering Journal, 7(11), 1947–1963. doi:10.28991/cej-2021-03091771.

Mohamed, M., Samuels, P., Morris, M. W., & Ghataora, G. S. (2002). Improving the accuracy of prediction of breach formation through embankment dams and flood embankments. Flow 2002 Conference on Fluvial Hydraulics, Louvain-la-Neuve, Belgium.


Full Text: PDF

DOI: 10.28991/CEJ-SP2021-07-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Marwan Hassan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message