Co-valorization of Tuff and Sandy Residues in Roads Construction
Abstract
Doi: 10.28991/CEJ-2022-08-05-013
Full Text: PDF
Keywords
References
Morsli, M., Bali, A., Bensaibi, M., & Gambin, M. (2007). Study of the hardening of a crust tuff from Hassi-Messaoud (Algeria). European Journal of Civil Engineering, 11(9–10), 1219–1240. doi:10.1080/17747120.2007.9692985.
Goual, I., Goual, M. S., Taibi, S., & Abou-Bekr, N. (2012). Improvement of the properties of a natural tuff used in the Saharan road technique by adding limestone sand. European Journal of Environmental and Civil Engineering, 16(6), 744–763. doi:10.1080/19648189.2012.667653.
Akacem M. (2017). alorization of local materials: tuff and dune sand in Saharan road construction. PhD Thesis, Oran University of Science and Technology-Mohamed Boudiaf, Oran, Algeria. (In French).
Salhi, R., & Messaoudi, K. (2021). The Effects of Delays in Algerian Construction Projects: An Empirical Study. Civil and Environmental Engineering Reports, 31(2), 218–254. doi:10.2478/ceer-2021-0027
Fenzy, E. (1966). Peculiarity of road technology in the Sahara. General review of roads and airfields, 411, 57-71. (In French).
Struillou, R., & Alloul, B. (1984). Road valuation of encrusted tuffs in Algeria. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Geologie de l'Ingénieur, 30(1), 465-469. (In French).
Salhi, R., & Messaoudi, K. (2021). The Effects of Delays in Algerian Construction Projects: An Empirical Study. Civil and Environmental Engineering Reports, 31(2), 218–254. doi:10.2478/ceer-2021-0027
Omar, H. M., Abbou, M., Akacem, M., Mekerta, B., & Semcha, A. (2017). Study of the mechanical characteristics of local materials from the Adrar region used in road construction. African Review of Science, Technology and Development, 2(01). (In French)
Imanzadeh, S., Hibouche, A., Jarno, A., & Taibi, S. (2018). Formulating and optimizing the compressive strength of a raw earth concrete by mixture design. Construction and Building Materials, 163, 149–159. doi:10.1016/j.conbuildmat.2017.12.088.
Gueddouda, M. K., Goual, I., Benabed, B., Taibi, S., & Aboubekr, N. (2016). Hydraulic properties of dune sand–bentonite mixtures of insulation barriers for hazardous waste facilities. Journal of Rock Mechanics and Geotechnical Engineering, 8(4), 541–550. doi:10.1016/j.jrmge.2016.02.003.
Lopez-Querol, S., Arias-Trujillo, J., GM-Elipe, M., Matias-Sanchez, A., & Cantero, B. (2017). Improvement of the bearing capacity of confined and unconfined cement-stabilized aeolian sand. Construction and Building Materials, 153, 374–384. doi:10.1016/j.conbuildmat.2017.07.124.
Elipe, M. G. M., & López-Querol, S. (2014). Aeolian sands: Characterization, options of improvement and possible employment in construction - The State-of-the-art. Construction and Building Materials, 73, 728–739. doi:10.1016/j.conbuildmat.2014.10.008.
Yan, W., Wu, G., & Dong, Z. (2019). Optimization of the mix proportion for desert sand concrete based on a statistical model. Construction and Building Materials, 226, 469–482. doi:10.1016/j.conbuildmat.2019.07.287.
Moulay Omar, H., Mekerta, B., Jarno, A., Imanzadeh, S., Alem, A., & Taibi, S. (2021). Optimization of dune sand-based mixture material for pavement design. European Journal of Environmental and Civil Engineering, 1–21. doi:10.1080/19648189.2021.1877827.
Akacem, M., Zentar, R., Mekerta, B., Sadok, A., & Moulay Omar, H. (2020). Co-valorisation of Local Materials Tuffs and Dune Sands in Construction of Roads. Geotechnical and Geological Engineering, 38(1), 435–447. doi:10.1007/s10706-019-01035-4.
Smaida, A., Haddadi, S., & Nechnech, A. (2019). Improvement of the mechanical performance of dune sand for using in flexible pavements. Construction and Building Materials, 208, 464–471. doi:10.1016/j.conbuildmat.2019.03.041.
Daheur, E. G., Goual, I., Taibi, S., & Mitiche-Kettab, R. (2019). Effect of Dune Sand Incorporation on the Physical and Mechanical Behaviour of Tuff: (Experimental Investigation). Geotechnical and Geological Engineering, 37(3), 1687–1701. doi:10.1007/s10706-018-0715-4.
Daheur, E. G., Taibi, S., Goual, I., & Li, Z. S. (2021). Hydro-mechanical behavior from small strain to failure of tuffs amended with dune sand – Application to pavements design in Saharan areas. Construction and Building Materials, 272, 121948. doi:10.1016/j.conbuildmat.2020.121948.
Cherif Taiba, A., Mahmoudi, Y., Baille, W., Wichtmann, T., & Belkhatir, M. (2021). Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence. Acta geotechnica Slovenica, 18(1), 28-40. doi:10.18690/actageotechslov.18.1.28-40.2021.
Azaiez, H., Taiba, A. C., Mahmoudi, Y., & Belkhatir, M. (2021). Characterization of Granular Materials Treated with Fly Ash for Road Infrastructure Applications. Transportation Infrastructure Geotechnology, 8(2), 228–253. doi:10.1007/s40515-020-00135-6.
Mahmoudi, Y., Cherif Taiba, A., Hazout, L., & Belkhatir, M. (2022). Comprehensive laboratory study on stress–strain of granular soils at constant global void ratio: combined effects of fabrics and silt content. Acta Geotechnica. doi:10.1007/s11440-022-01480-1.
Boudia, A., & Berga, A. (2021). Effect of grain size and distribution on mechanical behavior of dune sand. Civil Engineering Journal (Iran), 7(8), 1355–1377. doi:10.28991/cej-2021-03091730.
Abdellah, D., Gueddouda, M. K., Goual, I., Souli, H., & Ghembaza, M. S. (2020). Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture. Construction and Building Materials, 234, 117356. doi:10.1016/j.conbuildmat.2019.117356.
Mekaideche, K., Derfouf, F. E. M., Laimeche, A., & Abou-Bekr, N. (2021). Influence of the hydric state and lime treatment on the thermal conductivity of a calcareous tufa. Civil Engineering Journal (Iran), 7(3), 419–430. doi:10.28991/cej-2021-03091663.
Cherif Taiba, A., Mahmoudi, Y., Hazout, L., Belkhatir, M., & Baille, W. (2019). Evaluation of hydraulic conductivity through particle shape and packing density characteristics of sand–silt mixtures. Marine Georesources and Geotechnology, 37(10), 1175–1187. doi:10.1080/1064119X.2018.1539891.
Goual, I., Goual, M. S., Taibi, S., & Abou-Bekr, N. (2011). Behaviour of unsaturated tuff- calcareous sand mixture on drying-wetting and triaxial paths. Geomechanics and Engineering, 3(4), 267–284. doi:10.12989/gae.2011.3.4.267.
XP P94-041. (1995). Soil: investigation and testing. Granulometric description. Wet sieving method. AFNOR Standards, Paris, France. (In French).
Alloul, B. (1981). Geological and geotechnical study of the calcareous and gypsum tuffs of Algeria with a view to their road development. PhD Thesis, University of Paris VI, Paris, France. (In French).
Morsli, M. (2007). Contribution to the valorization of the tuffs in Saharan road engineering [Contribution to the valorization of the tuffs in Saharan road engineering]. Ph.D. Thesis, National Polytechnic School, Algiers, Algeria. (In French).
NF EN ISO 17892-12. (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 12: determination of liquid and plastic limits. AFNOR Standards, Paris, France. (In French).
NF EN 13286-2. (2010). Unbound and hydraulically bound mixtures - Part 2: test methods for laboratory reference density and water content - Proctor compaction. AFNOR Standards, Paris, France. (In French).
NF EN 13286-47. (2012). Unbound and hydraulically bound mixtures - Part 47: test method for the determination of California bearing ratio, immediate bearing index and linear swelling. AFNOR Standards, Paris, France. (In French).
NF EN ISO 17892-7. (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 7: unconfined compression test. AFNOR Standards, Paris, France. (In French).
NF P98-232-3. (1993). Tests relating to pavements. Determination of the mechanical properties of materials treated with hydraulic bunders. Part 3: diametric compression test on sands and soils. AFNOR Standards, Paris, France. (In French).
Dubois, V., Abriak, N. E., Zentar, R., & Ballivy, G. (2009). The use of marine sediments as a pavement base material. Waste Management, 29(2), 774–782. doi:10.1016/j.wasman.2008.05.004.
Wang, D. X., Abriak, N. E., Zentar, R., & Xu, W. (2012). Solidification/stabilization of dredged marine sediments for road construction. Environmental technology, 33(1), 95-101. doi: 10.1080/09593330.2011.551840
Fenzy, E. (1970). The current state of road technology in the Sahara. Technical report, Directorate of Infrastructure of the Saharan Organization, Ministry of Public Works, Ben Aknoun, Algiers, Algeria. (In French).
The Unified Soil Classification System (USCS). The Unified Soil Classification System, Tech. Rep. Arch. Image Libr., pp. 1–28, 1977.
LCPC - SETRA. (2000). Road earthworks guide - Realization of embankments and capping layers (2nd Ed.). Fascide I, General Principles. Available online: https://www.cerema.fr/fr/centre-ressources/boutique/realisation-remblais-couches-forme-gtr-fascicule-1-principes (accessed on February 2022).
Moulay Omar, H. (2021). Geotechnical characterization of material deposits in the Adrar region: Applications in road engineering. Thesis, National Polytechnic School of Oran, Oran, Algeria. (In French).
Naeini, S. A., & Ziaie-Moayed, R. (2009). Effect of plasticity index and reinforcement on the CBR value of soft clay. International Journal of Civil Engineering, 7(2), 124–130.
Loualbia, H., Sebaibi, Y., Duc, M., Goual, I., & Feia, S. (2017). Effect of different drying methods on the mechanical behavior and the microstructure of an Algerian compacted limestone crust. Journal of Adhesion Science and Technology, 31(10), 1045–1060. doi:10.1080/01694243.2016.1242525.
Soulié, F. (2008). Microscopic study of cohesion by capillarity in the wet granular mediums. European Journal of Environment and Civil Engineering, 12(3), 279-290. doi:10.1080/19648189.2008.9693014.
Edet, A. (2018). Correlation Between Physiomechanical Parameters and Geotechnical Evaluations of Some Sandstones Along the Calabar/Odukpani–Ikom–Ogoja Highway Transect, Southeastern Nigeria. Geotechnical and Geological Engineering, 36(1), 135–149. doi:10.1007/s10706-017-0311-z.
Katte, V. Y., Mfoyet, S. M., Manefouet, B., Wouatong, A. S. L., & Bezeng, L. A. (2019). Correlation of California Bearing Ratio (CBR) Value with Soil Properties of Road Subgrade Soil. Geotechnical and Geological Engineering, 37(1), 217–234. doi:10.1007/s10706-018-0604-x.
González Farias, I., Araujo, W., & Ruiz, G. (2018). Prediction of California Bearing Ratio from Index Properties of Soils Using Parametric and Non-parametric Models. Geotechnical and Geological Engineering, 36(6), 3485–3498. doi:10.1007/s10706-018-0548-1.
Messaouda Cherrak, Meriem Morsli, Ramdane Boutemeur, & Abderrahim Bali. (2015). Valorization of the Use of Calcareous Tuff and Dune Sand in Saharan Road Design. Journal of Civil Engineering and Architecture, 9(6). doi:10.17265/1934-7359/2015.06.004.
DOI: 10.28991/CEJ-2022-08-05-013
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Hassan Moulay Omar

This work is licensed under a Creative Commons Attribution 4.0 International License.