A Comparative Study of Metakaolin/Slag-Based Geopolymer Mortars Incorporating Natural and Recycled Sands
Downloads
Doi: 10.28991/CEJ-2022-08-08-07
Full Text: PDF
[2] Guillaume, B. (2009). The ecological factory: concrete challenged by environmental issues. La Fabrique Ecologique. Available online: https://www.lafabriqueecologique.fr/le-beton-mis-au-defi-des-enjeux-environnementaux/ (accessed on April 2022). (In French).
[3] Davidovits, J. (1994). Properties of Geopolymer Cements. 1st International Conference on Alkaline Cements and Concretes, 131–149, Kiev States Technical University, Kiev, Ukraine.
[4] Yunsheng, Z., Wei, S., & Zongjin, L. (2006). Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique. Journal of Materials Science, 41(10), 2787–2794. doi:10.1007/s10853-006-6293-5.
[5] Kurad, R., Silvestre, J. D., de Brito, J., & Ahmed, H. (2017). Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. Journal of Cleaner Production, 166, 485–502. doi:10.1016/j.jclepro.2017.07.236.
[6] Duxson, P. (2006). The structure and thermal evolution of metakaolin geopolymers. Ph.D. Thesis, University of Melbourne, Melbourne, Australia.
[7] Priyadharshini, P., Ramamurthy, K., & Robinson, R. G. (2017). Excavated soil waste as fine aggregate in fly ash based geopolymer mortar. Applied Clay Science, 146, 81–91. doi:10.1016/j.clay.2017.05.038.
[8] Tennakoon, C., Nicolas, R. S., Sanjayan, J. G., & Shayan, A. (2016). Thermal effects of activators on the setting time and rate of workability loss of geopolymers. Ceramics International, 42(16), 19257–19268. doi:10.1016/j.ceramint.2016.09.092.
[9] Pacheco-Torgal, F., Moura, D., Ding, Y., & Jalali, S. (2011). Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials, 25(9), 3732–3745. doi:10.1016/j.conbuildmat.2011.04.017.
[10] Pavithra, P., Srinivasula Reddy, M., Dinakar, P., Hanumantha Rao, B., Satpathy, B. K., & Mohanty, A. N. (2016). A mix design procedure for geopolymer concrete with fly ash. Journal of Cleaner Production, 133, 117–125. doi:10.1016/j.jclepro.2016.05.041.
[11] Aliabdo, A. A., Abd Elmoaty, A. E. M., & Salem, H. A. (2016). Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and Building Materials, 123, 581–593. doi:10.1016/j.conbuildmat.2016.07.043.
[12] Davidovits, J. (2008). Geopolymer chemistry and applications (5th Ed.). Geopolymer Institute, Saint-Quentin, France.
[13] Burciaga-Díaz, O., Escalante-García, J. I., Arellano-Aguilar, R., & Gorokhovsky, A. (2010). Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements. Journal of the American Ceramic Society, 93(2), 541–547. doi:10.1111/j.1551-2916.2009.03414.x.
[14] Borges, P. H. R., Banthia, N., Alcamand, H. A., Vasconcelos, W. L., & Nunes, E. H. M. (2016). Performance of blended metakaolin/blastfurnace slag alkali-activated mortars. Cement and Concrete Composites, 71, 42–52. doi:10.1016/j.cemconcomp.2016.04.008.
[15] Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K., & Ariffin, M. A. M. (2016). Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar. Ain Shams Engineering Journal, 9(4), 1557–1566. doi:10.1016/j.asej.2016.11.011.
[16] Shi, C., Roy, D., & Krivenko, P. (2006). Alkali-Activated Cements and Concretes. In Alkali-Activated Cements and Concretes (1st Ed.). CRC Press, London, United Kingdom. doi:10.1201/9781482266900.
[17] Nordström, J., Nilsson, E., Jarvol, P., Nayeri, M., Palmqvist, A., Bergenholtz, J., & Matic, A. (2011). Concentration- and pH-dependence of highly alkaline sodium silicate solutions. Journal of Colloid and Interface Science, 356(1), 37–45. doi:10.1016/j.jcis.2010.12.085.
[18] Yang, X., Zhu, W., & Yang, Q. (2008). The viscosity properties of sodium silicate solutions. Journal of Solution Chemistry, 37(1), 73–83. doi:10.1007/s10953-007-9214-6.
[19] Jansson, H., & Tang, L. (2014). The initial setting time of ground granulated blastfurnace slag GGBS and its relation to the modulus of the alkali-activating solution. Proceedings of XXII Nordic Concrete Research Symposium, 255-258, 13-15 August, 2014, Reykjavik, Iceland.
[20] Jansson, H., Bernin, D., & Ramser, K. (2015). Silicate species of water glass and insights for alkali-activated green cement. AIP Advances, 5(6). doi:10.1063/1.4923371.
[21] Mezghiche, B., Zeghichi, L., Chebili, R., & Mellas, M. (2006). Curing methods of precast concrete elements. Asian Journal of Civil Engineering (Building and Housing), 7(6), 581-589.
[22] Wu, Y., Lu, B., Bai, T., Wang, H., Du, F., Zhang, Y., Cai, L., Jiang, C., & Wang, W. (2019). Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Construction and Building Materials, 224, 930–949. doi:10.1016/j.conbuildmat.2019.07.112.
[23] Rakhimova, N. R., & Rakhimov, R. Z. (2019). Literature Review of Advances in Materials Used in Development of Alkali-Activated Mortars, Concretes, and Composites. Journal of Materials in Civil Engineering, 31(11). doi:10.1061/(asce)mt.1943-5533.0002899.
[24] van Deventer, J. S. J., Provis, J. L., Duxson, P., & Lukey, G. C. (2007). Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 139(3), 506–513. doi:10.1016/j.jhazmat.2006.02.044.
[25] Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., & Chindaprasirt, P. (2015). Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/C2013-0-16511-7.
[26] Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., & Darmawan, S. (2016). Strength Development and Microfabric Structure of Construction and Demolition Aggregates Stabilized with Fly Ash–Based Geopolymers. Journal of Materials in Civil Engineering, 28(11), 4016141. doi:10.1061/(asce)mt.1943-5533.0001652.
[27] Reig, L., Sanz, M. A., Borrachero, M. V., Monzó, J., Soriano, L., & Payá, J. (2017). Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceramics International, 43(16), 13622–13634. doi:10.1016/j.ceramint.2017.07.072
[28] Panizza, M., Natali, M., Garbin, E., Tamburini, S., & Secco, M. (2018). Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material. Construction and Building Materials, 181, 119–133. doi:10.1016/j.conbuildmat.2018.06.018.
[29] Allahverdi, A., & Najafi Kani, E. (2009). Construction wastes as raw materials for geopolymer binders. International Journal of Civil Engineering, 7(3), 154–160.
[30] Ahmari, S., Ren, X., Toufigh, V., & Zhang, L. (2012). Production of geopolymeric binder from blended waste concrete powder and fly ash. Construction and Building Materials, 35, 718–729. doi:10.1016/j.conbuildmat.2012.04.044.
[31] Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., & Galetakis, M. (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Advanced Powder Technology, 26(2), 368–376. doi:10.1016/j.apt.2014.11.012.
[32] Vásquez, A., Cárdenas, V., Robayo, R. A., & de Gutiérrez, R. M. (2016). Geopolymer based on concrete demolition waste. Advanced Powder Technology, 27(4), 1173–1179. doi:10.1016/j.apt.2016.03.029.
[33] Nixon, P. J. (1978). Recycled concrete as an aggregate for concrete-a review. Matériaux et Constructions, 11(5), 371–378. doi:10.1007/BF02473878.
[34] Mastali, M., Kinnunen, P., Dalvand, A., Mohammadi Firouz, R., & Illikainen, M. (2018). Drying shrinkage in alkali-activated binders – A critical review. Construction and Building Materials, 190, 533–550. doi:10.1016/j.conbuildmat.2018.09.125.
[35] FrankoviÄ, A., Ducman, V., Dolenec, S., Panizza, M., Tamburini, S., Natali, M., Pappa, M., Tsoutis, C., & Bernardi, A. (2020). Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 262, 120475. doi:10.1016/j.conbuildmat.2020.120475.
[36] Benalia, S., & Zeghichi, L. (2021). Contribution to the study of the effect of activation on the mechanical behavior of geopolymers. Academic Journal of Civil Engineering, 39(1), 87-90. doi:10.26168/ajce.39.1.20. (In French).
[37] Ollivier J. P. (1997). Durabilité des bétons. Compte rendu des journées techniques AFPC-AFREM. (In French).
[38] Zumdahl S. S. (2002). Chemical principles (4th Ed.). Houghton Mifflin Co, Boston, United States.
[39] Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 29(2), 159–170. doi:10.1016/S0008-8846(98)00212-9.
[40] Brough, A. R., & Atkinson, A. (2002). Sodium silicate-based, alkali-activated slag mortars - Part I. Strength, hydration and microstructure. Cement and Concrete Research, 32(6), 865–879. doi:10.1016/S0008-8846(02)00717-2.
[41] Zeghichi, L., & Benghazi, Z. (2011). Physical effects of natural pozzolana on alkali-activated slag cement. World Journal of Engineering, 8(2), 141–146. doi:10.1260/1708-5284.8.2.141.
[42] Hansen, T. C. (1986). Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-1985. Materials and Structures, 19(3), 201–246. doi:10.1007/BF02472036.
[43] Wang, S. D., Pu, X. C., Scrivener, K. L., & Pratt, P. L. (1995). Alkali-activated slag cement and concrete: A review of properties and problems. Advances in Cement Research, 7(27), 93–102. doi:10.1680/adcr.1995.7.27.93.
[44] Myers, R. J., Bernal, S. A., San Nicolas, R., & Provis, J. L. (2013). Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model. Langmuir, 29(17), 5294–5306. doi:10.1021/la4000473.
[45] Puertas, F., González-Fonteboa, B., González-Taboada, I., Alonso, M. M., Torres-Carrasco, M., Rojo, G., & Martínez-Abella, F. (2018). Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites, 85, 22–31. doi:10.1016/j.cemconcomp.2017.10.003.
[46] Runzhang, Y., Qiongying, G., & Shixi, O. (1988). Study on structure and latent hydraulic activity of slag and its activation mechanism. Silicates industriels, 53(3-4), 55-59.
[47] Liu, Z., Cai, C. S., Peng, H., & Fan, F. (2016). Experimental Study of the Geopolymeric Recycled Aggregate Concrete. Journal of Materials in Civil Engineering, 28(9), 4016077. doi:10.1061/(asce)mt.1943-5533.0001584.
[48] Koushkbaghi, M., Alipour, P., Tahmouresi, B., Mohseni, E., Saradar, A., & Sarker, P. K. (2019). Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Construction and Building Materials, 205, 519–528. doi:10.1016/j.conbuildmat.2019.01.174.
[49] Kthangamanibindhu M., D. & Murthy S. R. (2015). An-experimental investigation on the mechanical properties of geopolymerconcrete. 6(8), 311- 323.
[50] Akbarnezhad, A., Huan, M., Mesgari, S., & Castel, A. (2015). Recycling of geopolymer concrete. Construction and Building Materials, 101, 152–158. doi:10.1016/j.conbuildmat.2015.10.037.
[51] Omary, S., Ghorbel, E., & Wardeh, G. (2016). Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties. Construction and Building Materials, 108, 163–174. doi:10.1016/j.conbuildmat.2016.01.042.
[52] Hasnaoui, A., Ghorbel, E., & Wardeh, G. (2021). Performance of metakaolin/slag-based geopolymer concrete made with recycled fine and coarse aggregates. Journal of Building Engineering, 42. doi:10.1016/j.jobe.2021.102813.
[53] Park, S., & Pour-Ghaz, M. (2018). What is the role of water in the geopolymerization of metakaolin? Construction and Building Materials, 182, 360–370. doi:10.1016/j.conbuildmat.2018.06.073.
[54] Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2021). Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete. Construction and Building Materials, 271. doi:10.1016/j.conbuildmat.2020.121850.
[55] Bature, A. S., Khorami, M., Ganjian, E., & Tyrer, M. (2021). Influence of alkali activator type and proportion on strength performance of calcined clay geopolymer mortar. Construction and Building Materials, 267, 120446. doi:10.1016/j.conbuildmat.2020.120446.
[56] Zhang, P., Wang, K., Wang, J., Guo, J., & Ling, Y. (2021). Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. Journal of Cleaner Production, 294(21). doi:10.1016/j.jclepro.2021.126193.
[57] Liu, Q., Singh, A., Xiao, J., Li, B., & Tam, V. W. (2020). Workability and mechanical properties of mortar containing recycled sand from aerated concrete blocks and sintered clay bricks. Resources, Conservation and Recycling, 157. doi:10.1016/j.resconrec.2020.104728.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
