A Comparative Study of Metakaolin/Slag-Based Geopolymer Mortars Incorporating Natural and Recycled Sands

Saliha Benalia, Leila Zeghichi, Zied Benghazi

Abstract


Great efforts are being made to minimize the negative impact of the Portland cement industry on the environment by using industrial by-products during the manufacture of clinker or by the partial replacement of cement during the preparation of concrete. However, the carbon footprint remains relatively high in addition to the large consumption of natural resources such as sand and other aggregates. A solution to these problems is to completely replace Portland cement with a new generation of mineral binders, commonly known as geopolymers, which have properties similar to those of Portland cement. These binders can be obtained by the alkali-activation of siliceous or aluminosilicate materials. This study aims to develop pozzolanic type binders at room temperature (20°C) from the alkali-activation of aluminosilicate materials based on metakaolin and blast furnace slag at different percentages. Different activators were employed, including solid (NaOH) and liquid (Na2SiO3.nH2O). The optimal mixtures were used for making mortars based on natural sand (NS) and concrete recycled sand (CRS). A comparative experimental study of the physical, mechanical, and microstructural characteristics of the two types of mortars was conducted. Cement mixtures with a high amount of slag and an association of sodium hydroxide and sodium silicate gave the best physico-mechanical properties. A drop in the compressive strength of mortars prepared with CRS was observed after 365 days, but it was still higher than those with NS. The obtained results show the possibility of designing an eco-friendly CRS-based geopolymer mortar that is more resistant than NS-based mortar with a homogeneous and integrated microstructure.

 

Doi: 10.28991/CEJ-2022-08-08-07

Full Text: PDF


Keywords


Geopolymer; Metakaolin; Slag; Alkali-activation; Recycled Sand; Mortar; Strength.

References


International Energy Agency (IEA). (2018). World Energy Outlook 2018. IEA, Paris, France. Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on June 2022).

Guillaume, B. (2009). The ecological factory: concrete challenged by environmental issues. La Fabrique Ecologique. Available online: https://www.lafabriqueecologique.fr/le-beton-mis-au-defi-des-enjeux-environnementaux/ (accessed on April 2022). (In French).

Davidovits, J. (1994). Properties of Geopolymer Cements. 1st International Conference on Alkaline Cements and Concretes, 131–149, Kiev States Technical University, Kiev, Ukraine.

Yunsheng, Z., Wei, S., & Zongjin, L. (2006). Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique. Journal of Materials Science, 41(10), 2787–2794. doi:10.1007/s10853-006-6293-5.

Kurad, R., Silvestre, J. D., de Brito, J., & Ahmed, H. (2017). Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. Journal of Cleaner Production, 166, 485–502. doi:10.1016/j.jclepro.2017.07.236.

Duxson, P. (2006). The structure and thermal evolution of metakaolin geopolymers. Ph.D. Thesis, University of Melbourne, Melbourne, Australia.

Priyadharshini, P., Ramamurthy, K., & Robinson, R. G. (2017). Excavated soil waste as fine aggregate in fly ash based geopolymer mortar. Applied Clay Science, 146, 81–91. doi:10.1016/j.clay.2017.05.038.

Tennakoon, C., Nicolas, R. S., Sanjayan, J. G., & Shayan, A. (2016). Thermal effects of activators on the setting time and rate of workability loss of geopolymers. Ceramics International, 42(16), 19257–19268. doi:10.1016/j.ceramint.2016.09.092.

Pacheco-Torgal, F., Moura, D., Ding, Y., & Jalali, S. (2011). Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials, 25(9), 3732–3745. doi:10.1016/j.conbuildmat.2011.04.017.

Pavithra, P., Srinivasula Reddy, M., Dinakar, P., Hanumantha Rao, B., Satpathy, B. K., & Mohanty, A. N. (2016). A mix design procedure for geopolymer concrete with fly ash. Journal of Cleaner Production, 133, 117–125. doi:10.1016/j.jclepro.2016.05.041.

Aliabdo, A. A., Abd Elmoaty, A. E. M., & Salem, H. A. (2016). Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and Building Materials, 123, 581–593. doi:10.1016/j.conbuildmat.2016.07.043.

Davidovits, J. (2008). Geopolymer chemistry and applications (5th Ed.). Geopolymer Institute, Saint-Quentin, France.

Burciaga-Díaz, O., Escalante-García, J. I., Arellano-Aguilar, R., & Gorokhovsky, A. (2010). Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements. Journal of the American Ceramic Society, 93(2), 541–547. doi:10.1111/j.1551-2916.2009.03414.x.

Borges, P. H. R., Banthia, N., Alcamand, H. A., Vasconcelos, W. L., & Nunes, E. H. M. (2016). Performance of blended metakaolin/blastfurnace slag alkali-activated mortars. Cement and Concrete Composites, 71, 42–52. doi:10.1016/j.cemconcomp.2016.04.008.

Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K., & Ariffin, M. A. M. (2016). Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar. Ain Shams Engineering Journal, 9(4), 1557–1566. doi:10.1016/j.asej.2016.11.011.

Shi, C., Roy, D., & Krivenko, P. (2006). Alkali-Activated Cements and Concretes. In Alkali-Activated Cements and Concretes (1st Ed.). CRC Press, London, United Kingdom. doi:10.1201/9781482266900.

Nordström, J., Nilsson, E., Jarvol, P., Nayeri, M., Palmqvist, A., Bergenholtz, J., & Matic, A. (2011). Concentration- and pH-dependence of highly alkaline sodium silicate solutions. Journal of Colloid and Interface Science, 356(1), 37–45. doi:10.1016/j.jcis.2010.12.085.

Yang, X., Zhu, W., & Yang, Q. (2008). The viscosity properties of sodium silicate solutions. Journal of Solution Chemistry, 37(1), 73–83. doi:10.1007/s10953-007-9214-6.

Jansson, H., & Tang, L. (2014). The initial setting time of ground granulated blastfurnace slag GGBS and its relation to the modulus of the alkali-activating solution. Proceedings of XXII Nordic Concrete Research Symposium, 255-258, 13-15 August, 2014, Reykjavik, Iceland.

Jansson, H., Bernin, D., & Ramser, K. (2015). Silicate species of water glass and insights for alkali-activated green cement. AIP Advances, 5(6). doi:10.1063/1.4923371.

Mezghiche, B., Zeghichi, L., Chebili, R., & Mellas, M. (2006). Curing methods of precast concrete elements. Asian Journal of Civil Engineering (Building and Housing), 7(6), 581-589.

Wu, Y., Lu, B., Bai, T., Wang, H., Du, F., Zhang, Y., Cai, L., Jiang, C., & Wang, W. (2019). Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Construction and Building Materials, 224, 930–949. doi:10.1016/j.conbuildmat.2019.07.112.

Rakhimova, N. R., & Rakhimov, R. Z. (2019). Literature Review of Advances in Materials Used in Development of Alkali-Activated Mortars, Concretes, and Composites. Journal of Materials in Civil Engineering, 31(11). doi:10.1061/(asce)mt.1943-5533.0002899.

van Deventer, J. S. J., Provis, J. L., Duxson, P., & Lukey, G. C. (2007). Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 139(3), 506–513. doi:10.1016/j.jhazmat.2006.02.044.

Pacheco-Torgal, F., Labrincha, J. A., Leonelli, C., Palomo, A., & Chindaprasirt, P. (2015). Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/C2013-0-16511-7.

Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., & Darmawan, S. (2016). Strength Development and Microfabric Structure of Construction and Demolition Aggregates Stabilized with Fly Ash–Based Geopolymers. Journal of Materials in Civil Engineering, 28(11), 4016141. doi:10.1061/(asce)mt.1943-5533.0001652.

Reig, L., Sanz, M. A., Borrachero, M. V., Monzó, J., Soriano, L., & Payá, J. (2017). Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceramics International, 43(16), 13622–13634. doi:10.1016/j.ceramint.2017.07.072

Panizza, M., Natali, M., Garbin, E., Tamburini, S., & Secco, M. (2018). Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material. Construction and Building Materials, 181, 119–133. doi:10.1016/j.conbuildmat.2018.06.018.

Allahverdi, A., & Najafi Kani, E. (2009). Construction wastes as raw materials for geopolymer binders. International Journal of Civil Engineering, 7(3), 154–160.

Ahmari, S., Ren, X., Toufigh, V., & Zhang, L. (2012). Production of geopolymeric binder from blended waste concrete powder and fly ash. Construction and Building Materials, 35, 718–729. doi:10.1016/j.conbuildmat.2012.04.044.

Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., & Galetakis, M. (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Advanced Powder Technology, 26(2), 368–376. doi:10.1016/j.apt.2014.11.012.

Vásquez, A., Cárdenas, V., Robayo, R. A., & de Gutiérrez, R. M. (2016). Geopolymer based on concrete demolition waste. Advanced Powder Technology, 27(4), 1173–1179. doi:10.1016/j.apt.2016.03.029.

Nixon, P. J. (1978). Recycled concrete as an aggregate for concrete-a review. Matériaux et Constructions, 11(5), 371–378. doi:10.1007/BF02473878.

Mastali, M., Kinnunen, P., Dalvand, A., Mohammadi Firouz, R., & Illikainen, M. (2018). Drying shrinkage in alkali-activated binders – A critical review. Construction and Building Materials, 190, 533–550. doi:10.1016/j.conbuildmat.2018.09.125.

Frankovič, A., Ducman, V., Dolenec, S., Panizza, M., Tamburini, S., Natali, M., Pappa, M., Tsoutis, C., & Bernardi, A. (2020). Up-scaling and performance assessment of façade panels produced from construction and demolition waste using alkali activation technology. Construction and Building Materials, 262, 120475. doi:10.1016/j.conbuildmat.2020.120475.

Benalia, S., & Zeghichi, L. (2021). Contribution to the study of the effect of activation on the mechanical behavior of geopolymers. Academic Journal of Civil Engineering, 39(1), 87-90. doi:10.26168/ajce.39.1.20. (In French).

Ollivier J. P. (1997). Durabilité des bétons. Compte rendu des journées techniques AFPC-AFREM. (In French).

Zumdahl S. S. (2002). Chemical principles (4th Ed.). Houghton Mifflin Co, Boston, United States.

Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 29(2), 159–170. doi:10.1016/S0008-8846(98)00212-9.

Brough, A. R., & Atkinson, A. (2002). Sodium silicate-based, alkali-activated slag mortars - Part I. Strength, hydration and microstructure. Cement and Concrete Research, 32(6), 865–879. doi:10.1016/S0008-8846(02)00717-2.

Zeghichi, L., & Benghazi, Z. (2011). Physical effects of natural pozzolana on alkali-activated slag cement. World Journal of Engineering, 8(2), 141–146. doi:10.1260/1708-5284.8.2.141.

Hansen, T. C. (1986). Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-1985. Materials and Structures, 19(3), 201–246. doi:10.1007/BF02472036.

Wang, S. D., Pu, X. C., Scrivener, K. L., & Pratt, P. L. (1995). Alkali-activated slag cement and concrete: A review of properties and problems. Advances in Cement Research, 7(27), 93–102. doi:10.1680/adcr.1995.7.27.93.

Myers, R. J., Bernal, S. A., San Nicolas, R., & Provis, J. L. (2013). Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model. Langmuir, 29(17), 5294–5306. doi:10.1021/la4000473.

Puertas, F., González-Fonteboa, B., González-Taboada, I., Alonso, M. M., Torres-Carrasco, M., Rojo, G., & Martínez-Abella, F. (2018). Alkali-activated slag concrete: Fresh and hardened behaviour. Cement and Concrete Composites, 85, 22–31. doi:10.1016/j.cemconcomp.2017.10.003.

Runzhang, Y., Qiongying, G., & Shixi, O. (1988). Study on structure and latent hydraulic activity of slag and its activation mechanism. Silicates industriels, 53(3-4), 55-59.

Liu, Z., Cai, C. S., Peng, H., & Fan, F. (2016). Experimental Study of the Geopolymeric Recycled Aggregate Concrete. Journal of Materials in Civil Engineering, 28(9), 4016077. doi:10.1061/(asce)mt.1943-5533.0001584.

Koushkbaghi, M., Alipour, P., Tahmouresi, B., Mohseni, E., Saradar, A., & Sarker, P. K. (2019). Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Construction and Building Materials, 205, 519–528. doi:10.1016/j.conbuildmat.2019.01.174.

Kthangamanibindhu M., D. & Murthy S. R. (2015). An-experimental investigation on the mechanical properties of geopolymerconcrete. 6(8), 311- 323.

Akbarnezhad, A., Huan, M., Mesgari, S., & Castel, A. (2015). Recycling of geopolymer concrete. Construction and Building Materials, 101, 152–158. doi:10.1016/j.conbuildmat.2015.10.037.

Omary, S., Ghorbel, E., & Wardeh, G. (2016). Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties. Construction and Building Materials, 108, 163–174. doi:10.1016/j.conbuildmat.2016.01.042.

Hasnaoui, A., Ghorbel, E., & Wardeh, G. (2021). Performance of metakaolin/slag-based geopolymer concrete made with recycled fine and coarse aggregates. Journal of Building Engineering, 42. doi:10.1016/j.jobe.2021.102813.

Park, S., & Pour-Ghaz, M. (2018). What is the role of water in the geopolymerization of metakaolin? Construction and Building Materials, 182, 360–370. doi:10.1016/j.conbuildmat.2018.06.073.

Pasupathy, K., Ramakrishnan, S., & Sanjayan, J. (2021). Influence of recycled concrete aggregate on the foam stability of aerated geopolymer concrete. Construction and Building Materials, 271. doi:10.1016/j.conbuildmat.2020.121850.

Bature, A. S., Khorami, M., Ganjian, E., & Tyrer, M. (2021). Influence of alkali activator type and proportion on strength performance of calcined clay geopolymer mortar. Construction and Building Materials, 267, 120446. doi:10.1016/j.conbuildmat.2020.120446.

Zhang, P., Wang, K., Wang, J., Guo, J., & Ling, Y. (2021). Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. Journal of Cleaner Production, 294(21). doi:10.1016/j.jclepro.2021.126193.

Liu, Q., Singh, A., Xiao, J., Li, B., & Tam, V. W. (2020). Workability and mechanical properties of mortar containing recycled sand from aerated concrete blocks and sintered clay bricks. Resources, Conservation and Recycling, 157. doi:10.1016/j.resconrec.2020.104728.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-08-07

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 saliha benalia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message