Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches
Downloads
Doi: 10.28991/CEJ-2022-08-07-010
Full Text: PDF
Downloads
[2] Morino, M., Maksud Kamal, A. S. M., Muslim, D., Ekram Ali, R. M., Kamal, M. A., Zillur Rahman, M., & Kaneko, F. (2011). Seismic event of the Dauki Fault in 16th century confirmed by trench investigation at Gabrakhari Village, Haluaghat, Mymensingh, Bangladesh. Journal of Asian Earth Sciences, 42(3), 492–498. doi:10.1016/j.jseaes.2011.05.002.
[3] Morino, M., Kamal, A. S. M. M., Akhter, S. H., Rahman, M. Z., Ali, R. M. E., Talukder, A., ... Kaneko, F. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. Journal of Asian Earth Sciences, 91, 218–226. doi:10.1016/j.jseaes.2014.06.002.
[4] Steckler, M. S., Mondal, D. R., Akhter, SH., Seeber, L., Feng, L., Gale, J., Hill, E. M., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615–18. doi:10.1038/ngeo2760.
[5] Adnan, M. S. G., Talchabhadel, R., Nakagawa, H., & Hall, J. W. (2020). The potential of tidal river management for flood alleviation in south western Bangladesh. Science of the Total Environment, 731, 138747. doi:10.1016/j.scitotenv.2020.138747.
[6] Rahman, Z., & Siddiqua, S. (2016). Liquefaction resistance evaluation of soils using standard penetration test blow count and shear wave velocity. Proceedings of the 69th Canadian geotechnical society. Canadian Geotechnical Society, Vancouver, Canada.
[7] Bilham, R., & England, P. (2001). Plateau "pop-up” in the great 1897 Assam earthquake. Nature, 410(6830), 806–809. doi:10.1038/35071057.
[8] Hossain, B. (2021). Empirical Correlation between Shear Wave Velocity and Uncorrected Standard Penetration Resistance (SPT-N) for Dinajpur District, Bangladesh. Journal of Nature, Science & Technology, 1(3), 25–29. doi:10.36937/janset.2021.003.005.
[9] Rahman, M. A., Ahmed, S., & Imam, M. O. (2020). Rational Way of Estimating Liquefaction Severity: An Implication for Chattogram, the Port City of Bangladesh. Geotechnical and Geological Engineering, 38(2), 2359–2375. doi:10.1007/s10706-019-01134-2.
[10] Coduto, D. P. (1999). Geotechnical engineering: principles and practices. Pearson College Division, New York City, United States.
[11] Papathanassiou, G., Seggis, K., & Pavlides, S. (2011). Evaluating earthquake-induced liquefaction in the urban area of Larissa, Greece. Bulletin of Engineering Geology and the Environment, 70(1), 79–88. doi:10.1007/s10064-010-0281-3.
[12] Mihajlović, G., & нivković, M. (2020). Sieving Extremely Wet Earth Mass by Means of Oscillatory Transporting Platform. Emerging Science Journal, 4(3), 172–182. doi:10.28991/esj-2020-01221.
[13] Peng, E., Hou, Z., Sheng, Y., Hu, X., Zhang, D., Song, L., & Chou, Y. (2021). Anti-liquefaction performance of partially saturated sand induced by biogas under high intensity vibration. Journal of Cleaner Production, 319, 128794. doi:10.1016/j.jclepro.2021.128794.
[14] Seed, H. B., & Idriss, I. M. (1967). Analysis of Soil Liquefaction: Niigata Earthquake. In Journal of the Soil Mechanics and Foundations Division, 93(3), 83–108. doi:10.1061/jsfeaq.0000981.
[15] Erdik, M. (2001). Report on 1999 Kocaeli and Duzce (Turkey) Earthquakes, Structural control for civil and infrastructure engineering. World Scientific, Singapore. doi:10.1142/9789812811707_0018.
[16] Bray, J. D., & Sancio, R. B. (2006). Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(9), 1165–1177. doi:10.1061/(ASCE)1090-0241(2006)132:9(1165).
[17] Ansary, M. A., & Rashid, M. A. (2000). Generation of liquefaction potential map for Dhaka, Bangladesh. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 24-26 July, 2000, University of Notre Dame, Notre Dame, Indiana, United States.
[18] Islam, M. S., & Hossain, M. T. (2010). Earthquake Induced Liquefaction Potential of Reclaimed Areas of Dhaka City. GeoShanghai International Conference 2010. doi:10.1061/41102(375)40.
[19] Mhaske, S. Y., & Choudhury, D. (2010). GIS-based soil liquefaction susceptibility map of Mumbai city for earthquake events. Journal of Applied Geophysics, 70(3), 216–225. doi:10.1016/j.jappgeo.2010.01.001.
[20] Thoithoi, L., Ningthoujam, P. S., Singh, R. P., & Shukla, D. P. (2013). Liquefaction Study of Subsurface Soil in Part of Delhi University, North Campus. International Journal of Advancement in Earth and Environmental Science, 1(1), 14–22.
[21] Hossain, M. S., Kamal, A. S. M. M., Rahman, M. Z., Farazi, A. H., Mondal, D. R., Mahmud, T., & Ferdous, N. (2020). Assessment of soil liquefaction potential: a case study for Moulvibazar town, Sylhet, Bangladesh. SN Applied Sciences, 2(4). doi:10.1007/s42452-020-2582-x.
[22] Sengupta, S., & Kolathayar, S. (2020). Evaluation of liquefaction potential of soil at a power plant site in Chittagong, Bangladesh. International Journal of Geotechnical Earthquake Engineering, 11(1), 1–16. doi:10.4018/IJGEE.2020010101.
[23] Wadi, D., Wu, W., Malik, I., Ahmed, H. A., & Makki, A. (2021). Assessment of liquefaction potential of soil based on standard penetration test for the upper Benue region in Nigeria. In Environmental Earth Sciences, 80(7), 1-11. doi:10.1007/s12665-021-09565-y.
[24] Abdullah, G. M. S., & El Aal, A. A. (2021). Liquefaction hazards mapping along Rеd Sеa coast, Jеddah city, Kingdom of Saudi Arabia. Soil Dynamics and Earthquake Engineering, 144. doi:10.1016/j.soildyn.2021.106682.
[25] Subedi, M., & Acharya, I. P. (2022). Liquefaction hazard assessment and ground failure probability analysis in the Kathmandu Valley of Nepal. Geoenvironmental Disasters, 9(1). doi:10.1186/s40677-021-00203-0.
[26] Tint, Z. L., Kyaw, N. M., & Kyaw, K. (2018). Development of soil distribution and liquefaction potential maps for downtown area in Yangon, Myanmar. Civil Engineering Journal, 4(3), 689-701. doi:10.28991/cej-0309108.
[27] Hossain, M. S., Xiao, W., Khan, M. S. H., Chowdhury, K. R., & Ao, S. (2020). Geodynamic model and tectono-structural framework of the Bengal Basin and its surroundings. Journal of Maps, 16(2), 445–458. doi:10.1080/17445647.2020.1770136
[28] Hossain, M.S., Khan, M.S.H., Chowdhury, K.R., Abdullah, R. (2019). Synthesis of the Tectonic and Structural Elements of the Bengal Basin and Its Surroundings. Tectonics and Structural Geology: Indian Context. Springer Geology. Springer, Cham, Switzerland. doi:10.1007/978-3-319-99341-6_6.
[29] Khan, M. S. H., Hossain, M. S., & Chowdhury, K. R. (2017). Geomorphic Implications and active tectonics of the Sitapahar Anticline–CTFB, Bangladesh. Bangladesh Geoscience Journal, 23, 1–24.
[30] Curray, J.R., Emmel, F.J., Moore, D.G., Raitt, R.W. (1982). Structure, Tectonics, and Geological History of the Northeastern Indian Ocean. The Ocean Basins and Margins. Springer, Boston, United States. doi:10.1007/978-1-4615-8038-6_9.
[31] Ambraseys, N. N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206. doi:10.1111/j.1365-246X.2004.02323.x
[32] Alam, M. K., Hasan, A. K. M., Khan, M. R., & Whitney, J. W. (1990). Geological Map of Bangladesh. Geological Survey of Bangladesh. US Geological Survey, Dhaka, Bangladesh.
[33] Chang, M., Kuo, C. ping, Shau, S. hui, & Hsu, R. eeh. (2011). Comparison of SPT-N-based analysis methods in evaluation of liquefaction potential during the 1999 Chi-chi earthquake in Taiwan. Computers and Geotechnics, 38(3), 393–406. doi:10.1016/j.compgeo.2011.01.003.
[34] Tokimatsu, K., & Yoshimi, Y. (1983). Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content. Soils and Foundations, 23(4), 56–74. doi:10.3208/sandf1972.23.4_56
[35] Seed, H.B, & Idriss, I.M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and foundation Divisions, 97(9), 1249–1273. doi:10.1061/jsfeaq.0001662.
[36] Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4), 115–130. doi:10.1016/j.soildyn.2004.11.023
[37] Youd, T. L., & Idriss, I. M. (1997). Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils. Report NCEER-97-0022, Brigham Young University, Provo, United States.
[38] Rauch, A. F. (1997). An empirical method for predicting surface displacements due to liquefaction-induced lateral spreading in earthquakes. PhD Thesis, Virginia Tech, Blacksburg, United States.
[39] Luna, R., & Frost, J. D. (1998). Spatial Liquefaction Analysis System. Journal of Computing in Civil Engineering, 12(1), 48–56. doi:10.1061/(asce)0887-3801(1998)12:1(48).
[40] Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S., & Sato, H. (1982). Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 3rd International Conference on Microzonation, 28 June-1 July, 1982, Seattle, United States.
[41] Youd, T. L., & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironment Engineering, 127(4), 297–313. doi:10.1061/(asce)1090-0241(2001)127:4(297).
[42] Toprak, S., Holzer, T. L., Bennett, M. J., & Tinsley III, J. C. (1999). CPT-and SPT-based probabilistic assessment of liquefaction. 7th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction, Multidisciplinary Center for Earthquake Engineering Research, 15-17 August, Seattle, United States.
[43] Juang, C. H., Jiang, T., & Andrus, R. D. (2002). Assessing probability-based methods for liquefaction potential evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 580-589. doi:10.1061/(ASCE)1090-0241(2002)128:7(580).
[44] Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(12), 1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425).
[45] Juang, C. H., Ching, J., Luo, Z., & Ku, C. S. (2012). New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Engineering Geology, 133–134, 85–93. doi:10.1016/j.enggeo.2012.02.015.
[46] Gowda, G. B., Dinesh, S. V., Govindaraju, L., & Babu, R. R. (2022). Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations. Civil Engineering Journal, 7, 58-70. doi:10.28991/CEJ-SP2021-07-05.
[47] Boulanger, R. W., & Idriss, I. M. (2012). Probabilistic standard penetration test–based liquefaction–triggering procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1185-1195. doi:10.1061/(ASCE) GT.1943-5606.0000700.
[48] Idriss, I. M., & Boulanger, R. W. (2010). Report on SPT-based liquefaction triggering procedures. Report number: UCD/CGM-10/02, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California at Davis, Davis, United States.
[49] Sharma, B., Siddique, A. F., Medhi, B. J., & Begum, N. (2018). Assessment of liquefaction potential of Guwahati city by probabilistic approaches. Innovative Infrastructure Solutions, 3(1), 1-12. doi:10.1007/s41062-017-0117-0.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.