Liquefaction Potential Evaluation by Deterministic and Probabilistic Approaches
Abstract
Doi: 10.28991/CEJ-2022-08-07-010
Full Text: PDF
Keywords
References
Mahabub, M. S., Hossain, A. T. M. S., & Pahlowan, E. U. D. (2020). Assessment of Liquefaction Potential from Sirajganj to Kurigram Area, Bangladesh. IOSR Journal of Mechanical and Civil Engineering, 17(1), 31–43. doi:10.9790/1684-1701033143.
Morino, M., Maksud Kamal, A. S. M., Muslim, D., Ekram Ali, R. M., Kamal, M. A., Zillur Rahman, M., & Kaneko, F. (2011). Seismic event of the Dauki Fault in 16th century confirmed by trench investigation at Gabrakhari Village, Haluaghat, Mymensingh, Bangladesh. Journal of Asian Earth Sciences, 42(3), 492–498. doi:10.1016/j.jseaes.2011.05.002.
Morino, M., Kamal, A. S. M. M., Akhter, S. H., Rahman, M. Z., Ali, R. M. E., Talukder, A., … Kaneko, F. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. Journal of Asian Earth Sciences, 91, 218–226. doi:10.1016/j.jseaes.2014.06.002.
Steckler, M. S., Mondal, D. R., Akhter, SH., Seeber, L., Feng, L., Gale, J., Hill, E. M., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615–18. doi:10.1038/ngeo2760.
Adnan, M. S. G., Talchabhadel, R., Nakagawa, H., & Hall, J. W. (2020). The potential of tidal river management for flood alleviation in south western Bangladesh. Science of the Total Environment, 731, 138747. doi:10.1016/j.scitotenv.2020.138747.
Rahman, Z., & Siddiqua, S. (2016). Liquefaction resistance evaluation of soils using standard penetration test blow count and shear wave velocity. Proceedings of the 69th Canadian geotechnical society. Canadian Geotechnical Society, Vancouver, Canada.
Bilham, R., & England, P. (2001). Plateau “pop-up” in the great 1897 Assam earthquake. Nature, 410(6830), 806–809. doi:10.1038/35071057.
Hossain, B. (2021). Empirical Correlation between Shear Wave Velocity and Uncorrected Standard Penetration Resistance (SPT-N) for Dinajpur District, Bangladesh. Journal of Nature, Science & Technology, 1(3), 25–29. doi:10.36937/janset.2021.003.005.
Rahman, M. A., Ahmed, S., & Imam, M. O. (2020). Rational Way of Estimating Liquefaction Severity: An Implication for Chattogram, the Port City of Bangladesh. Geotechnical and Geological Engineering, 38(2), 2359–2375. doi:10.1007/s10706-019-01134-2.
Coduto, D. P. (1999). Geotechnical engineering: principles and practices. Pearson College Division, New York City, United States.
Papathanassiou, G., Seggis, K., & Pavlides, S. (2011). Evaluating earthquake-induced liquefaction in the urban area of Larissa, Greece. Bulletin of Engineering Geology and the Environment, 70(1), 79–88. doi:10.1007/s10064-010-0281-3.
Mihajlović, G., & Živković, M. (2020). Sieving Extremely Wet Earth Mass by Means of Oscillatory Transporting Platform. Emerging Science Journal, 4(3), 172–182. doi:10.28991/esj-2020-01221.
Peng, E., Hou, Z., Sheng, Y., Hu, X., Zhang, D., Song, L., & Chou, Y. (2021). Anti-liquefaction performance of partially saturated sand induced by biogas under high intensity vibration. Journal of Cleaner Production, 319, 128794. doi:10.1016/j.jclepro.2021.128794.
Seed, H. B., & Idriss, I. M. (1967). Analysis of Soil Liquefaction: Niigata Earthquake. In Journal of the Soil Mechanics and Foundations Division, 93(3), 83–108. doi:10.1061/jsfeaq.0000981.
Erdik, M. (2001). Report on 1999 Kocaeli and Duzce (Turkey) Earthquakes, Structural control for civil and infrastructure engineering. World Scientific, Singapore. doi:10.1142/9789812811707_0018.
Bray, J. D., & Sancio, R. B. (2006). Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(9), 1165–1177. doi:10.1061/(ASCE)1090-0241(2006)132:9(1165).
Ansary, M. A., & Rashid, M. A. (2000). Generation of liquefaction potential map for Dhaka, Bangladesh. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, 24-26 July, 2000, University of Notre Dame, Notre Dame, Indiana, United States.
Islam, M. S., & Hossain, M. T. (2010). Earthquake Induced Liquefaction Potential of Reclaimed Areas of Dhaka City. GeoShanghai International Conference 2010. doi:10.1061/41102(375)40.
Mhaske, S. Y., & Choudhury, D. (2010). GIS-based soil liquefaction susceptibility map of Mumbai city for earthquake events. Journal of Applied Geophysics, 70(3), 216–225. doi:10.1016/j.jappgeo.2010.01.001.
Thoithoi, L., Ningthoujam, P. S., Singh, R. P., & Shukla, D. P. (2013). Liquefaction Study of Subsurface Soil in Part of Delhi University, North Campus. International Journal of Advancement in Earth and Environmental Science, 1(1), 14–22.
Hossain, M. S., Kamal, A. S. M. M., Rahman, M. Z., Farazi, A. H., Mondal, D. R., Mahmud, T., & Ferdous, N. (2020). Assessment of soil liquefaction potential: a case study for Moulvibazar town, Sylhet, Bangladesh. SN Applied Sciences, 2(4). doi:10.1007/s42452-020-2582-x.
Sengupta, S., & Kolathayar, S. (2020). Evaluation of liquefaction potential of soil at a power plant site in Chittagong, Bangladesh. International Journal of Geotechnical Earthquake Engineering, 11(1), 1–16. doi:10.4018/IJGEE.2020010101.
Wadi, D., Wu, W., Malik, I., Ahmed, H. A., & Makki, A. (2021). Assessment of liquefaction potential of soil based on standard penetration test for the upper Benue region in Nigeria. In Environmental Earth Sciences, 80(7), 1-11. doi:10.1007/s12665-021-09565-y.
Abdullah, G. M. S., & El Aal, A. A. (2021). Liquefaction hazards mapping along Rеd Sеa coast, Jеddah city, Kingdom of Saudi Arabia. Soil Dynamics and Earthquake Engineering, 144. doi:10.1016/j.soildyn.2021.106682.
Subedi, M., & Acharya, I. P. (2022). Liquefaction hazard assessment and ground failure probability analysis in the Kathmandu Valley of Nepal. Geoenvironmental Disasters, 9(1). doi:10.1186/s40677-021-00203-0.
Tint, Z. L., Kyaw, N. M., & Kyaw, K. (2018). Development of soil distribution and liquefaction potential maps for downtown area in Yangon, Myanmar. Civil Engineering Journal, 4(3), 689-701. doi:10.28991/cej-0309108.
Hossain, M. S., Xiao, W., Khan, M. S. H., Chowdhury, K. R., & Ao, S. (2020). Geodynamic model and tectono-structural framework of the Bengal Basin and its surroundings. Journal of Maps, 16(2), 445–458. doi:10.1080/17445647.2020.1770136
Hossain, M.S., Khan, M.S.H., Chowdhury, K.R., Abdullah, R. (2019). Synthesis of the Tectonic and Structural Elements of the Bengal Basin and Its Surroundings. Tectonics and Structural Geology: Indian Context. Springer Geology. Springer, Cham, Switzerland. doi:10.1007/978-3-319-99341-6_6.
Khan, M. S. H., Hossain, M. S., & Chowdhury, K. R. (2017). Geomorphic Implications and active tectonics of the Sitapahar Anticline–CTFB, Bangladesh. Bangladesh Geoscience Journal, 23, 1–24.
Curray, J.R., Emmel, F.J., Moore, D.G., Raitt, R.W. (1982). Structure, Tectonics, and Geological History of the Northeastern Indian Ocean. The Ocean Basins and Margins. Springer, Boston, United States. doi:10.1007/978-1-4615-8038-6_9.
Ambraseys, N. N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206. doi:10.1111/j.1365-246X.2004.02323.x
Alam, M. K., Hasan, A. K. M., Khan, M. R., & Whitney, J. W. (1990). Geological Map of Bangladesh. Geological Survey of Bangladesh. US Geological Survey, Dhaka, Bangladesh.
Chang, M., Kuo, C. ping, Shau, S. hui, & Hsu, R. eeh. (2011). Comparison of SPT-N-based analysis methods in evaluation of liquefaction potential during the 1999 Chi-chi earthquake in Taiwan. Computers and Geotechnics, 38(3), 393–406. doi:10.1016/j.compgeo.2011.01.003.
Tokimatsu, K., & Yoshimi, Y. (1983). Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content. Soils and Foundations, 23(4), 56–74. doi:10.3208/sandf1972.23.4_56
Seed, H.B, & Idriss, I.M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and foundation Divisions, 97(9), 1249–1273. doi:10.1061/jsfeaq.0001662.
Idriss, I. M., & Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4), 115–130. doi:10.1016/j.soildyn.2004.11.023
Youd, T. L., & Idriss, I. M. (1997). Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils. Report NCEER-97-0022, Brigham Young University, Provo, United States.
Rauch, A. F. (1997). An empirical method for predicting surface displacements due to liquefaction-induced lateral spreading in earthquakes. PhD Thesis, Virginia Tech, Blacksburg, United States.
Luna, R., & Frost, J. D. (1998). Spatial Liquefaction Analysis System. Journal of Computing in Civil Engineering, 12(1), 48–56. doi:10.1061/(asce)0887-3801(1998)12:1(48).
Iwasaki, T., Tokida, K. I., Tatsuoka, F., Watanabe, S., Yasuda, S., & Sato, H. (1982). Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 3rd International Conference on Microzonation, 28 June-1 July, 1982, Seattle, United States.
Youd, T. L., & Idriss, I. M. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironment Engineering, 127(4), 297–313. doi:10.1061/(asce)1090-0241(2001)127:4(297).
Toprak, S., Holzer, T. L., Bennett, M. J., & Tinsley III, J. C. (1999). CPT-and SPT-based probabilistic assessment of liquefaction. 7th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Liquefaction, Multidisciplinary Center for Earthquake Engineering Research, 15-17 August, Seattle, United States.
Juang, C. H., Jiang, T., & Andrus, R. D. (2002). Assessing probability-based methods for liquefaction potential evaluation. Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 580-589. doi:10.1061/(ASCE)1090-0241(2002)128:7(580).
Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(12), 1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425).
Juang, C. H., Ching, J., Luo, Z., & Ku, C. S. (2012). New models for probability of liquefaction using standard penetration tests based on an updated database of case histories. Engineering Geology, 133–134, 85–93. doi:10.1016/j.enggeo.2012.02.015.
Gowda, G. B., Dinesh, S. V., Govindaraju, L., & Babu, R. R. (2022). Effect of Liquefaction Induced Lateral Spreading on Seismic Performance of Pile Foundations. Civil Engineering Journal, 7, 58-70. doi:10.28991/CEJ-SP2021-07-05.
Boulanger, R. W., & Idriss, I. M. (2012). Probabilistic standard penetration test–based liquefaction–triggering procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1185-1195. doi:10.1061/(ASCE) GT.1943-5606.0000700.
Idriss, I. M., & Boulanger, R. W. (2010). Report on SPT-based liquefaction triggering procedures. Report number: UCD/CGM-10/02, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California at Davis, Davis, United States.
Sharma, B., Siddique, A. F., Medhi, B. J., & Begum, N. (2018). Assessment of liquefaction potential of Guwahati city by probabilistic approaches. Innovative Infrastructure Solutions, 3(1), 1-12. doi:10.1007/s41062-017-0117-0.
DOI: 10.28991/CEJ-2022-08-07-010
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Md. Belal Hossain, Md Roknuzzaman, Md Mahabub Rahman
This work is licensed under a Creative Commons Attribution 4.0 International License.