A Triangular Shell Element Based on Higher-order Strains for the Analysis of Static and Free Vibration

Hamida Sekkour, Lamine Belounar, Abderahim Belounar, Faiçal Boussem, Lahcene Fortas


This research paper proposes a new triangular cylindrical finite element for static and free vibration analysis of cylindrical structures. The formulation of the proposed element is based on deep shell theory and uses assumed strain functions instead of displacement functions. The assumed strain functions satisfy the compatibility equations. This finite element possesses only the five necessary degrees of freedom for each of the three corner nodes. The element's displacement field, which contains higher-order terms, satisfies the requirement of rigid-body displacement. The element's performance is evaluated using various numerical static and free vibration tests for cylindrical shell problems, including an analysis of the effect of shell openings on natural frequencies. The results of the developed element are evaluated in comparison with published analytical and numerical solutions. The new cylindrical element's formulation is straightforward. Compared to the degenerate nine-node shell element and other elements, the results of the present element have shown excellent accuracy and efficiency in predicting static and free vibration of curved structures. This element only requires the use of very coarse meshes to converge. In addition, the triangular shape of this element is more advantageous than the quadrilateral shape when the geometric domain of the structure is deformed or complicated.


Doi: 10.28991/CEJ-2022-08-10-06

Full Text: PDF


Strain Approach; Curved Structures; Deep Shells Theory; Cylindrical Finite Element; Free Vibration.


Yang, H. T. Y., Saigal, S., Masud, A., & Kapania, R. K. (2000). A survey of recent shell finite elements. International Journal for Numerical Methods in Engineering, 47(1–3), 101–127. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C.

Zienkiewicz, O. C. (1967). The Finite Element Method in Structural and Continuum Mechanics: Numerical Solution of Problems in Structural and Contimuum Mechanics. McGraw-Hill, New York City, United States.

Liang, Y., & Izzuddin, B. A. (2022). Locking-free 6-noded triangular shell elements based on hierarchic optimization. Finite Elements in Analysis and Design, 204, 103741. doi:10.1016/j.finel.2022.103741.

Abed-Meraim, F., & Combescure, A. (2007). A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element. European Journal of Computational Mechanics, 16(8), 1037–1072. doi:10.3166/REMN.16.1037-1072.

Trinh, V. D., Abed-Meraim, F., & Combescure, A. (2011). A new assumed strain solid-shell formulation “SHB6” for the six-node prismatic finite element. Journal of Mechanical Science and Technology, 25(9), 2345–64. doi:10.1007/s12206-011-0710-7.

Batoz, J. ‐L, & Tahar, M. Ben. (1982). Evaluation of a new quadrilateral thin plate bending element. International Journal for Numerical Methods in Engineering, 18(11), 1655–1677. doi:10.1002/nme.1620181106.

Yang, H. T. Y., Saigal, S., & Liaw, D. G. (1990). Advances of thin shell finite elements and some applications-version I. Computers and Structures, 35(4), 481–504. doi:10.1016/0045-7949(90)90071-9.

Dagade, V. A., & Kulkarni, S. D. (2022). Static and free vibration analysis of sandwich shell panels using quadrilateral flat shell finite element. Materials Today: Proceedings, 63, 295–301. doi:10.1016/j.matpr.2022.03.084.

Jones, R. E., & Strome, D. R. (1966). Direct stiffness method analysis of shells of revolution utilizing curved elements. AIAA Journal, 4(9), 1519–1525. doi:10.2514/3.3729.

Connor, J. J., & Brebbia, C. (1967). Stiffness Matrix for Shallow Rectangular Shell Element. Journal of the Engineering Mechanics Division, 93(5), 43–65. doi:10.1061/jmcea3.0000894.

Cantin, G., & Clough, R. W. (1968). A curved, cylindrical-shell, finite element. AIAA Journal, 6(6), 1057–1062. doi.org/10.2514/3.4673.

Koziey, B. L., & Mirza, F. A. (1997). Consistent thick shell element. Computers and Structures, 65(4), 531–549. doi:10.1016/S0045-7949(96)00414-2.

Dawe, D. J. (1975). High-order triangular finite element for shell analysis. International Journal of Solids and Structures, 11(10), 1097–1110. doi:10.1016/0020-7683(75)90089-X.

Cowper, G. R., Lindberg, G. M., & Olson, M. D. (1970). A shallow shell finite element of triangular shape. International Journal of Solids and Structures, 6(8), 1133–1156. doi:10.1016/0020-7683(70)90052-1.

Kim, Y. H., Jones, R. F., & Lee, S. W. (1990). Study of 20-node solid element. Communications in Applied Numerical Methods, 6(3), 197–205. doi:10.1002/cnm.1630060306.

Ayad, R., Zouari, W., Meftah, K., Zineb, T. Ben, & Benjeddou, A. (2013). Enrichment of linear hexahedral finite elements using rotations of a virtual space fiber. International Journal for Numerical Methods in Engineering, 95(1), 46–70. doi:10.1002/nme.4500.

Belounar, L., & Guenfoud, M. (2005). A new rectangular finite element based on the strain approach for plate bending. Thin-Walled Structures, 43(1), 47–63. doi:10.1016/j.tws.2004.08.003.

Belounar, A., Benmebarek, S., Houhou, M. N., & Belounar, L. (2019). Static, free vibration, and buckling analysis of plates using strain-based Reissner–Mindlin elements. International Journal of Advanced Structural Engineering, 11(2), 211–230. doi:10.1007/s40091-019-0226-4.

Belounar, A., Benmebarek, S., & Belounar, L. (2020). Strain based triangular finite element for plate bending analysis. Mechanics of Advanced Materials and Structures, 27(8), 620–632. doi:10.1080/15376494.2018.1488310.

Belounar, A., Benmebarek, S., Houhou, M. N., & Belounar, L. (2020). Free Vibration with Mindlin Plate Finite Element Based on the Strain Approach. Journal of the Institution of Engineers (India): Series C, 101(2), 331–346. doi:10.1007/s40032-020-00555-w.

Boussem, F., Belounar, A., & Belounar, L. (2022). Assumed strain finite element for natural frequencies of bending plates. World Journal of Engineering, 19(5), 620–631. doi:10.1108/WJE-02-2021-0114.

Boussem, F., & Belounar, L. (2020). A Plate Bending Kirchhoff Element Based on Assumed Strain Functions. Journal of Solid Mechanics, 12(4), 935–952. doi:10.22034/jsm.2020.1901430.1601.

Belounar, A., Boussem, F., & Tati, A. (2022). A Novel C0 Strain-Based Finite Element for Free Vibration and Buckling Analyses of Functionally Graded Plates. Journal of Vibration Engineering and Technologies, 0123456789. doi:10.1007/s42417-022-00577-x.

Belounar, A., Boussem, F., Houhou, M. N., Tati, A., & Fortas, L. (2022). Strain-based finite element formulation for the analysis of functionally graded plates. Archive of Applied Mechanics, 92(7), 2061–2079. doi:10.1007/s00419-022-02160-y.

Belounar, A., Belounar, L., & Tati, A. (2022). An Assumed Strain Finite Element for Composite Plates Analysis. International Journal of Computational Methods. doi:10.1142/s0219876222500347.

Belarbi, M. T., & Maalem, T. (2005). On improved rectangular finite element for plane linear elasticity analysis. Revue Europeenne des Elements, 14(8), 985–997. doi:10.3166/reef.14.985-997.

Bouzidi, L., Belounar, L., & Guerraiche, K. (2019). Presentation of a new membrane strain-based finite element for static and dynamic analysis. International Journal of Structural Engineering, 10(1), 40–60. doi:10.1504/IJSTRUCTE.2019.101431.

Fortas, L., Belounar, L., & Merzouki, T. (2019). Formulation of a new finite element based on assumed strains for membrane structures. International Journal of Advanced Structural Engineering, 11, 9–18. doi:10.1007/s40091-019-00251-9.

Ram, A. K., & Mohanty, S. (2021). Experimental investigation on dynamic behavior of silt-rich fly ash using cyclic triaxial and bender element tests. Innovative Infrastructure Solutions, 6(4), 1-24. doi:10.1007/s41062-021-00582-1.

Barrera, C. S., & Tardiff, J. L. (2022). Static and dynamic properties of eggshell filled natural rubber composites for potential application in automotive vibration isolation and damping. Journal of Cleaner Production, 353, 131656. doi:10.1016/j.jclepro.2022.131656.

Belounar, L., & Guerraiche, K. (2014). A new strain based brick element for plate bending. Alexandria Engineering Journal, 53(1), 95–105. doi:10.1016/j.aej.2013.10.004.

Guerraiche, K. H., Belounar, L., & Bouzidi, L. (2018). A new eight nodes brick finite element based on the strain approach. Journal of Solid Mechanics, 10(1), 186–199.

Khiouani, H. E., Belounar, L., & Houhou, M. N. (2020). A new three-dimensional sector element for circular curved structures analysis. Journal of Solid Mechanics, 12(1), 165–174. doi:10.22034/jsm.2019.1867106.1430.

Messai, A., Belounar, L., & Merzouki, T. (2019). Static and free vibration of plates with a strain based brick element. European Journal of Computational Mechanics, 1–21. doi:10.1080/17797179.2018.1560845.

Ashwell, D. G., & Sabir, A. B. (1972). A new cylindrical shell finite element based on simple independent strain functions. International Journal of Mechanical Sciences, 14(3), 171–183. doi:10.1016/0020-7403(72)90074-4.

Djoudi, M. S., & Bahai, H. (2003). A shallow shell finite element for the linear and non-linear analysis of cylindrical shells. Engineering Structures, 25(6), 769–778. doi:10.1016/S0141-0296(03)00002-6.

Djoudi, M. S., & Bahai, H. (2004). A cylindrical strain-based shell element for vibration analysis of shell structures. Finite Elements in Analysis and Design, 40(13–14), 1947–1961. doi:10.1016/j.finel.2003.11.008.

Djoudi, M. S., & Bahai, H. (2004). Strain based finite element for the vibration of cylindrical panels with openings. Thin-Walled Structures, 42(4), 575–588. doi:10.1016/j.tws.2003.09.003.

Bourezane, M. (2017). An efficient strain based cylindrical shell finite element. Journal of Solid Mechanics, 9(3), 632–649.

Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. McGraw-hill, New York, United States.

Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, 1(1), 3–20. doi:10.1016/0168-874x(85)90003-4.

Sabir, A. B., & Lock, A. C. (1972). A curved, cylindrical shell, finite element. International Journal of Mechanical Sciences, 14(2), 125–135. doi:10.1016/0020-7403(72)90093-8.

Lindberg, G.M., Olson, M.D. & Cowper, E.R. (1969). New Developments in the Finite Element Analysis of Shells. National Research Council of Canada, Quarterly Bulletin of the Division of Mechanical Engineering and the National Aeronautical Establishment, 4, 1-38.

ASabir, A. B., & Charchaechi, T. A. (1982). Curved rectangular and general quadrilateral shell finite elements for cylindrical shells. The math of finite element and application, 231-239.

Soedel, W. (2004). Vibrations of shells and plates. CRC Press, Boca Raton, United States. doi:10.4324/9780203026304.

Lim, C. W., & Liew, K. M. (1995). A higher order theory for vibration of shear deformable cylindrical shallow shells. International Journal of Mechanical Sciences, 37(3), 277–295. doi:10.1016/0020-7403(95)93521-7.

Petyt, M. (1971). Vibration of curved plates. Journal of Sound and Vibration, 15(3), 381–395. doi:10.1016/0022-460X(71)90432-9.

Kanok‐nukulchai, W. (1979). A simple and efficient finite element for general shell analysis. International Journal for Numerical Methods in Engineering, 14(2), 179–200. doi:10.1002/nme.1620140204.

Huang, H. C., & Hinton, E. (1986). A new nine node degenerated shell element with enhanced membrane and shear interpolation. International Journal for Numerical Methods in Engineering, 22(1), 73–92. doi:10.1002/nme.1620220107.

Lee, S. J., & Han, S. E. (2001). Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element. Journal of Sound and Vibration, 241(4), 605–633. doi:10.1006/jsvi.2000.3313.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-10-06


  • There are currently no refbacks.

Copyright (c) 2022 Hamida SEKKOUR, Lamine Belounar, Abderahim Belounar, Faiçal Boussem, Lahcene Fortas

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.