Predicting the Inelastic Response of Base Isolated Structures Utilizing Regression Analysis and Artificial Neural Network
Abstract
Doi: 10.28991/CEJ-2022-08-06-07
Full Text: PDF
Keywords
References
Kitayama, S., & Constantinou, M. C. (2018). Seismic Performance of Buildings with Viscous Damping Systems Designed by the Procedures of ASCE/SEI 7-16. Journal of Structural Engineering, 144(6), 4018050. doi:10.1061/(asce)st.1943-541x.0002048.
Seo, C. Y., Karavasilis, T. L., Ricles, J. M., & Sause, R. (2014). Seismic performance and probabilistic collapse resistance assessment of steel moment resisting frames with fluid viscous dampers. Earthquake Engineering and Structural Dynamics, 43(14), 2135–2154. doi:10.1002/eqe.2440.
Symans, M. D., Cofer, W. F., & Fridley, K. J. (2002). Base isolation and supplemental damping systems for seismic protection of wood structures: Literature review. Earthquake Spectra, 18(3), 549–572. doi:10.1193/1.1503342.
Robinson, W. H. (1982). Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes. Earthquake Engineering & Structural Dynamics, 10(4), 593–604. doi:10.1002/eqe.4290100408.
Sasaki, T., Sato, E., Ryan, K. L., Okazaki, T., Kajiwara, K., & Mahin, S. A. (2012). NEES / E-Defense Base-Isolation Tests: Effectiveness of Friction Pendulum and Lead-Rubber Bearings Systems. 15th World Conference on Earthquake Engineering (15 WCEE), Lisbon, Portugal.
Rong, Q. (2020). Optimum parameters of a five-story building supported by lead-rubber bearings under near-fault ground motions. Journal of Low Frequency Noise Vibration and Active Control, 39(1), 98–113. doi:10.1177/1461348419845829.
Jibson, R. W. (2007). Regression models for estimating coseismic landslide displacement. Engineering Geology, 91(2–4), 209–218. doi:10.1016/j.enggeo.2007.01.013.
Carrillo, J., & Alcocer, S. M. (2012). Backbone model for performance-based seismic design of RC walls for low-rise housing. Earthquake Spectra, 28(3), 943–964. doi:10.1193/1.4000068.
Kaviani, P., Zareian, F., & Taciroglu, E. (2012). Seismic behavior of reinforced concrete bridges with skew-angled seat-type abutments. Engineering Structures, 45, 137–150. doi:10.1016/j.engstruct.2012.06.013.
Adam, B., & Smith, I. F. C. (2008). Active tensegrity: A control framework for an adaptive civil-engineering structure. Computers and Structures, 86(23–24), 2215–2223. doi:10.1016/j.compstruc.2008.05.006.
Prasad, B. K. R., Eskandari, H., & Reddy, B. V. V. (2009). Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Construction and Building Materials, 23(1), 117–128. doi:10.1016/j.conbuildmat.2008.01.014.
Maqsoom, A., Aslam, B., Gul, M. E., Ullah, F., Kouzani, A. Z., Parvez Mahmud, M. A., & Nawaz, A. (2021). Using multivariate regression and ann models to predict properties of concrete cured under hot weather: A case of Rawalpindi Pakistan. Sustainability (Switzerland), 13(18), 10164. doi:10.3390/su131810164.
Singh, P., Bhardwaj, S., Dixit, S., Shaw, R.N., Ghosh, A. (2021). Development of Prediction Models to Determine Compressive Strength and Workability of Sustainable Concrete with ANN. Innovations in Electrical and Electronic Engineering. Lecture Notes in Electrical Engineering, 756. doi:10.1007/978-981-16-0749-3_59.
Feng, D. C., Liu, Z. T., Wang, X. D., Chen, Y., Chang, J. Q., Wei, D. F., & Jiang, Z. M. (2020). Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materials, 230, 117000. doi:10.1016/j.conbuildmat.2019.117000.
Lee, T. L., Lin, H. M., & Lu, Y. P. (2009). Assessment of highway slope failure using neural networks. Journal of Zhejiang University: Science A, 10(1), 101–108. doi:10.1631/jzus.A0820265.
Chakraborty, A., & Goswami, D. D. (2017). Slope Stability Prediction using Artificial Neural Network (ANN). International Journal of Engineering and Computer Science, 6(6), 21845–21848. doi:10.18535/ijecs/v6i6.49.
Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815. doi:10.1016/j.engstruct.2007.01.013.
Chakraverty, S., Gupta, P., & Sharma, S. (2010). Neural network-based simulation for response identification of two-storey shear building subject to earthquake motion. Neural Computing and Applications, 19(3), 367–375. doi:10.1007/s00521-009-0279-6.
Adeli, H., & Panakkat, A. (2009). A probabilistic neural network for earthquake magnitude prediction. Neural Networks, 22(7), 1018–1024. doi:10.1016/j.neunet.2009.05.003.
Maya, M., Yu, W., & Telesca, L. (2022). Multi-Step Forecasting of Earthquake Magnitude Using Meta-Learning Based Neural Networks. Cybernetics and Systems, 53(6), 563–580. doi:10.1080/01969722.2021.1989170.
Kuang, W., Yuan, C., & Zhang, J. (2021). Network-based earthquake magnitude determination via deep learning. Seismological Research Letters, 92(4), 2245–2254. doi:10.1785/0220200317.
ASCE/SEI 7-22. (2022). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784415788.
Xu, F., Zhang, X., Xia, X., & Shi, J. (2022). Study on seismic behavior of a self-cantering railway bridge pier with sacrificial components. In Structures 35, 958-967. doi:10.1016/j.istruc.2021.11.061.
Hwang, J. S., & Chiou, J. M. (1996). An equivalent linear model of lead-rubber seismic isolation bearings. Engineering Structures, 18(7), 528–536. doi:10.1016/0141-0296(95)00132-8.
ACI 318-19. (2019). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Farmington Hills, United States. doi:10.14359/51716937.
NIST GCR 17-917-46v3. (2017). Guidelines for Nonlinear Structural Analysis for Design of Buildings Part IIb – Reinforced Concrete Moment Frasmes. Applied Technology Council, National Institute of Standards and technology (NIST), Gaithersburg, United States. doi: 10.6028/NIST.GCR.17-917-46v3.
Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), 1804–1826. doi:10.1061/(asce)0733-9445(1988)114:8(1804).
Park, R., & Paulay, T. (1991). Reinforced concrete structures. John Wiley & Sons, Hoboken, United States.
Kalantari, A., & Roohbakhsh, H. (2020). Expected seismic fragility of code-conforming RC moment resisting frames under twin seismic events. Journal of Building Engineering, 28, 101098. doi:10.1016/j.jobe.2019.101098.
Kangda, M. Z., & Bakre, S. (2018). The Effect of LRB Parameters on Structural Responses for Blast and Seismic Loads. Arabian Journal for Science and Engineering, 43(4), 1761–1776. doi:10.1007/s13369-017-2732-7.
FEMA P695. (2009). Quantification of building seismic performance factors. Federal Emergency Management Agency, Washington, United States.
ASCE/SEI 7-10. (2013). Minimum design loads for buildings and other structures.. American Society of Civil Engineers, Reston, United States. doi:10.1061/9780784412916.
Michaud, D., & Léger, P. (2014). Ground motions selection and scaling for nonlinear dynamic analysis of structures located in Eastern North America. Canadian Journal of Civil Engineering, 41(3), 232–244. doi:10.1139/cjce-2012-0339.
Sinharay, S. (2010). An overview of statistics in education. International Encyclopedia of Education (3rd Ed.), 1–11, Elsevier, Amsterdam, Netherlands. doi:10.1016/B978-0-08-044894-7.01719-X.
Achen, C. H. (1982). Interpreting and using regression (Vol. 29). Sage Publications, Newbury Park, United States. doi:10.4135/9781412984560.
Kompoliti, K., & Metman, L. V. (2010). Encyclopedia of movement disorders. In Encyclopedia of Movement Disorders. Academic Press, Massachusetts, United States. doi:10.1016/c2009-1-03732-0.
Pandelea, A., Budescu, M. & Covatariu, G. (2014). Applications of Artificial Neural Networks in Civil Engineering. 2nd International Conference for Ph.D. students in Civil Engineering and Architecture, 10-13 December, 2014, Cluj-Napoca, Romania.
Topçu, I. B., & Saridemir, M. (2007). Prediction of properties of waste AAC aggregate concrete using artificial neural network. Computational Materials Science, 41(1), 117–125. doi:10.1016/j.commatsci.2007.03.010.
Alshihri, M. M., Azmy, A. M., & El-Bisy, M. S. (2009). Neural networks for predicting compressive strength of structural light weight concrete. Construction and Building Materials, 23(6), 2214–2219. doi:10.1016/j.conbuildmat.2008.12.003.
Hagan, M. T., & Menhaj, M. B. (1994). Training Feedforward Networks with the Marquardt Algorithm. IEEE Transactions on Neural Networks, 5(6), 989–993. doi:10.1109/72.329697.
Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441. doi:10.1137/0111030.
FEMA 451B. (2007). NEHRP Recommended Provisions for New Buildings and Other Structures: Training and Instructional Materials. Federal Emergency Management Agency, Washington, United States.
Rahimi, F., Aghayari, R., & Samali, B. (2020). Application of tuned mass dampers for structural vibration control: a state-of-the-art review. Civil Engineering Journal, 6(8), 1622-1651. doi:10.28991/cej-2020-03091571.
Asuero, A. G., Sayago, A., & González, A. G. (2006). The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry, 36(1), 41–59. doi:10.1080/10408340500526766.
Vatcheva, K. P., & Lee, M. (2016). Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiology: Open Access, 06(02). doi:10.4172/2161-1165.1000227.
Khademi, F., Jamal, S. M., Deshpande, N., & Londhe, S. (2016). Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. International Journal of Sustainable Built Environment, 5(2), 355–369. doi:10.1016/j.ijsbe.2016.09.003.
Patil, S. V., Balakrishna Rao, K., & Nayak, G. (2021). Prediction of recycled coarse aggregate concrete mechanical properties using multiple linear regression and artificial neural network. Journal of Engineering, Design and Technology. doi:10.1108/JEDT-07-2021-0373.
DOI: 10.28991/CEJ-2022-08-06-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Mohammad Al-Rawashdeh, Isam Yousef, Mohammad Al-Nawaiseh
![Creative Commons License](http://licensebuttons.net/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.