Effect of Bonding Area on Bond Stress Behavior of GFRP Bars in Concrete

. Fakhruddin, . Kusnadi, Rudy Djamaluddin, Rita Irmawaty, Suharman Hamzah, Luna N. Ngeljaratan


The application of Glass Fiber Reinforced Polymer (GFRP) bars is suitable for concrete structures that are susceptible to corrosion, owing to their corrosion-resistant characteristics. Therefore, it is feasible to reduce the concrete cover on reinforced concrete beams by utilizing GFRP bars. However, this can reduce the bonding strength between GFRP bars and concrete. Therefore, this study aims to investigate the bonding behavior between GFRP bars and concrete as a preliminary test for structural applications. The bond stress behavior between GFRP bars and concrete was analyzed by 18 pull-out tests. The test specimens comprised GFRP bars with three different variations, namely GFRP bars with concrete cover (GFRP-C), GFRP bars without concrete cover (GFRP-E), and GFRP bars with a complete wrapping of GFRP sheet (GFRP-C-Sheet). The bond stress-slip curve, bond strength, and failure pattern were utilized to analyze the effect of each variation. The research results indicate that the bonding stress between GFRP bars and concrete was strongly influenced by the concrete cover, where the bonding strength decreased by 65%. Nevertheless, the utilization of a complete wrapping GFR) sheet resulted in a 26.4% increase in bonding stress. The present study has identified three distinct modes of failure, including pull-out (GFRP-C), concrete crushing (GFRP-E), and GFRP sheet debonding (GFRP-C-Sheet).


Doi: 10.28991/CEJ-SP2023-09-010

Full Text: PDF


Bond Strength; Centric Bars; Eccentric Bars; GFRP Bars; Pull Out.


Balafas, I., & Burgoyne, C. J. (2010). Environmental effects on cover cracking due to corrosion. Cement and Concrete Research, 40(9), 1429–1440. doi:10.1016/j.cemconres.2010.05.003.

Djamaluddin, R., Hijriah, Irmawati, R., Faharuddin, & Wahyuningsih, R. T. (2019). Delamination mechanism of GFRP sheet bonded on the reinforced concrete beams. MATEC Web of Conferences, 258, 03009. doi:10.1051/matecconf/201925803009.

Solyom, S., & Balázs, G. L. (2020). Bond of FRP bars with different surface characteristics. Construction and Building Materials, 264, 11983. doi:10.1016/j.conbuildmat.2020.119839.

Nanni, A., De Luca, A., & Jawaheri Zadeh, H. (2014). Reinforced Concrete with FRP Bars. In Reinforced Concrete with FRP Bars. CRC Press, London, United Kingdom. doi:10.1201/b16669.

Solyom, S., Di Benedetti, M., Szijártó, A., & L. Balázs, G. (2018). Non-Metallic Reinforcements with Different Moduli of Elasticity and Surfaces for Concrete Structures. Architecture, Civil Engineering, Environment, 11(2), 79–88. doi:10.21307/acee-2018-025.

Brown, V. L., & Bartholomew, C. L. (1993). FRP reinforcing bars in reinforced concrete members. ACI Materials Journal, 90(1), 34–39. doi:10.14359/4034.

Pecce, M., Manfredi, G., Realfonzo, R., & Cosenza, E. (2001). Experimental and Analytical Evaluation of Bond Properties of GFRP Bars. Journal of Materials in Civil Engineering, 13(4), 282–290. doi:10.1061/(asce)0899-1561(2001)13:4(282).

Baena, M., Torres, L., Turon, A., & Barris, C. (2009). Experimental study of bond behaviour between concrete and FRP bars using a pull-out test. Composites Part B: Engineering, 40(8), 784–797. doi:10.1016/j.compositesb.2009.07.003.

Achillides, Z., & Pilakoutas, K. (2004). Bond Behavior of Fiber Reinforced Polymer Bars under Direct Pullout Conditions. Journal of Composites for Construction, 8(2), 173–181. doi:10.1061/(asce)1090-0268(2004)8:2(173).

Yan, F., & Lin, Z. (2016). New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm. Composites Part B: Engineering, 92, 420–433. doi:10.1016/j.compositesb.2016.02.008.

Belarbi, A., & Wang, H. (2012). Bond Durability of FRP Bars Embedded in Fiber-Reinforced Concrete. Journal of Composites for Construction, 16(4), 371–380. doi:10.1061/(asce)cc.1943-5614.0000270.

Abbasi, A., & Hogg, P. J. (2005). Temperature and environmental effects on glass fibre rebar: Modulus, strength and interfacial bond strength with concrete. Composites Part B: Engineering, 36(5), 394–404. doi:10.1016/j.compositesb.2005.01.006.

Lin, X., & Zhang, Y. X. (2014). Evaluation of bond stress-slip models for FRP reinforcing bars in concrete. Composite Structures, 107(1), 131–141. doi:10.1016/j.compstruct.2013.07.037.

Yan, F., Lin, Z., & Yang, M. (2016). Bond mechanism and bond strength of GFRP bars to concrete: A review. Composites Part B: Engineering, 98, 56–69. doi:10.1016/j.compositesb.2016.04.068.

Veljkovic, A., Carvelli, V., Haffke, M. M., & Pahn, M. (2017). Concrete cover effect on the bond of GFRP bar and concrete under static loading. Composites Part B: Engineering, 124, 40–53. doi:10.1016/j.compositesb.2017.05.054.

Jurić, A., & Štefić, T. (2022). Experimental Comparison of the Bearing Capacity of GFRP Beams and 50% Recycled GFRP Beams. Civil Engineering Journal, 8(12), 3902-3911. doi:10.28991/CEJ-2022-08-12-017.

Liang, K., Chen, L., Shan, Z., & Su, R. K. L. (2023). Experimental and theoretical study on bond behavior of helically wound FRP bars with different rib geometry embedded in ultra-high-performance concrete. Engineering Structures, 281, 115769. doi:10.1016/j.engstruct.2023.115769.

Shan, Z., Liang, K., & Chen, L. (2023). Bond behavior of helically wound FRP bars with different surface characteristics in fiber-reinforced concrete. Journal of Building Engineering, 65, 105504. doi:10.1016/j.jobe.2022.105504.

Chen, L., Liang, K., & Shan, Z. (2023). Experimental and theoretical studies on bond behavior between concrete and FRP bars with different surface conditions. Composite Structures, 309, 116721. doi:10.1016/j.compstruct.2023.116721.

Li, P., Zeng, J., Li, W., & Zhao, Y. (2022). Effect of concrete heterogeneity on interfacial bond behavior of externally bonded FRP-to-concrete joints. Construction and Building Materials, 359, 129483. doi:10.1016/j.conbuildmat.2022.129483.

Nepomuceno, E., Sena-Cruz, J., Correia, L., & D’Antino, T. (2021). Review on the bond behavior and durability of FRP bars to concrete. Construction and Building Materials, 287, 123042. doi:10.1016/j.conbuildmat.2021.123042.

Fahmy, M. F. M., ShehabEldeen, A. S. A., & Wu, Z. (2021). Bar surface treatment effect on the bond-slip behavior and mechanism of basalt FRP bars embedded in concrete. Construction and Building Materials, 289, 122844. doi:10.1016/j.conbuildmat.2021.122844.

Galati, N., Nanni, A., Dharani, L. R., Focacci, F., & Aiello, M. A. (2006). Thermal effects on bond between FRP rebars and concrete. Composites Part A: Applied Science and Manufacturing, 37(8), 1223–1230. doi:10.1016/j.compositesa.2005.05.043.

Alsayed, S., Al-Salloum, Y., Almusallam, T., El-Gamal, S., & Aqel, M. (2012). Performance of glass fiber reinforced polymer bars under elevated temperatures. Composites Part B: Engineering, 43(5), 2265–2271. doi:10.1016/j.compositesb.2012.01.034.

Wang, Y. C., Wong, P. M. H., & Kodur, V. (2007). An experimental study of the mechanical properties of fibre reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures. Composite Structures, 80(1), 131–140. doi:10.1016/j.compstruct.2006.04.069.

Dong, K., Hao, J., Li, P., & Zhong, C. (2022). A nonlinear analytical model for predicting bond behavior of FRP-to-concrete/steel substrate joints subjected to temperature variations. Construction and Building Materials, 320, 126225. doi:10.1016/j.conbuildmat.2021.126225.

ACI440.3R. (2004). Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures. American Concrete Institute (ACI), Farmington Hills, United States.

Wei, W., Liu, F., Xiong, Z., Lu, Z., & Li, L. (2019). Bond performance between fibre-reinforced polymer bars and concrete under pull-out tests. Construction and Building Materials, 227, 116803. doi:10.1016/j.conbuildmat.2019.116803.

Aly, R. (2007). Stress along tensile lap-spliced fibre reinforced polymer reinforcing bars in concrete. Canadian Journal of Civil Engineering, 34(9), 1149–1158. doi:10.1139/L07-046.

ACI 440.1R-06. (2006). Guide for the design and construction of structural concrete reinforced with FRP bars. American Concrete Institute (ACI), Farmington Hills, United States.

CSA-S806-02. (2002). Design and construction of building components with fibre reinforced polymers. Canadian Standards Association (CSA), Toronto, Canada.

Uomoto, T. (1997). Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Japan Society of Civil Engineers, Tokyo, Japan.

Full Text: PDF

DOI: 10.28991/CEJ-SP2023-09-010


  • There are currently no refbacks.

Copyright (c) 2022 Fakhruddin Fakhruddin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.