Peat Soil Compaction Characteristic and Physicochemical Changes Treated with Eco-Processed Pozzolan (EPP)

Mohd Syeddre Sutarno, Habib Musa Mohamad


Peat soil was defined as the highly organic surface layer derived primarily from plant remains. Peat, on the other hand, was the subsurface of wetland systems, consisting of unconsolidated superficial layers with a high non-crystalline colloid (humus) content. Peat soils have a low shear strength of 5 to 20 kPa, a high compressibility of 0.9 to 1.5, and a high moisture content of >100%. The purpose of the study was to prognosticate the potential of Eco-Processed Pozzolan (EPP) as peat soil stabilization material with improved technique and its consequence of the methods, which was the peat soils index properties and analyse the characteristics of the peat soil stabilization before and after treatment using Eco-Processed Pozzolan (EPP). The soil was mixed with 10, 20, and 30% Eco-Processed Pozzolan (EPP) and then compacted (compaction test) in a metal mould with an internal diameter of 105 mm using a 2.5 kg rammer of 50 mm diameter, freefalling from 300 mm above the top of the soil Three layers compaction of approximately equal depth and 27 blows spread evenly over the soil surface for each layer. The expected result to accomplish the main purpose was to prognosticate the potential Eco-Processed Pozzolan (EPP) as peat soil stabilization material with improved technique and its consequence of the methods. According to the findings, peat soil treated with EPP will transform its qualities from peat to usable soil. However, the presence of moisture will reduce the mixture's ability. According to the findings of this study, the optimum EPP for stabilizing peat soils was 30-40%. Correspondingly, the elemental composition of peat soil mixed with EPP improved regardless of Carbon, Ca composition. Comparatively, the amount of Silicon, Si increased from 6.5% (Peat + EPP 10%) to 12.9% (Peat + EPP 40%) due to the crystallization of EPP and peat.


Doi: 10.28991/CEJ-2023-09-01-07

Full Text: PDF


Peat; Stabilization; Eco-Processed Pozzolan; Crystallization; Soil Compaction.


Huat, B. B. K., Prasad, A., Asadi, A., & Kazemian, S. (2014). Engineering properties of peat and organic soils. CRC Press, Boca Raton, United States. doi:10.1201/b15627.

Moldoveanu, S. C. (1998). Analytical pyrolysis of natural organic polymers. Elsevier, Amsterdam, Netherlands.

Razali, S. N. M., Bakar, I., & Zainorabidin, A. (2013). Behaviour of peat soil in instrumented physical model studies. Procedia Engineering, 53, 145–155. doi:10.1016/j.proeng.2013.02.020.

Mostafa, H. H. (2022). Lateral response evaluation of single piles based on pressuremeter test results (using Foxta) versus standard penetration test results (using Lpile). Innovative Infrastructure Solutions, 7(4), 1-10. doi:10.1007/s41062-022-00870-4.

Jones, D., & Brischke, C. (2017). Nonwood bio-based materials. Performance of Bio-Based Building Materials, 97–186, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-100982-6.00003-3.

Osman, K. T. (2018). Peat Soils. Management of Soil Problems, 145–183, Springer, Cham, Switzerland. doi:10.1007/978-3-319-75527-4_7.

Miettinen, J., Shi, C., & Liew, S. C. (2011). Deforestation rates in insular Southeast Asia between 2000 and 2010. Global Change Biology, 17(7), 2261-2270. doi:10.1111/j.1365-2486.2011.02398.x.

Huat, B. K. (2004). Organic and peat soils engineering. Penerbit Universiti Putra Malaysia, Seri Kembangan, Malaysia.

Mahmod, A. A. W., Mohd, S., Mohd Masirin, M. I., Tajudin, S. A. A., Bakar, I., Zainorabidin, A., Kifli, A. Z., & Hua, L. J. (2016). Construction of buildings on peat: Case studies and lessons learned. MATEC Web of Conferences, 47, 3014. doi:10.1051/matecconf/20164703013.

Rahman, R. F. A., Asrah, H., Rizalman, A. N., Mirasa, A. K., & Rajak, M. A. A. (2020). Study of eco-processed pozzolan characterization as partial replacement of cement. Journal of Environmental Treatment Techniques, 8(3), 967–970.

Johnson, A. W., & Sallberg, J. R. (1962). Factors influencing compaction test results. Highway Research Board Bulletin, 319, Highway Research Board, Washington, United States.

Chindaprasirt, P., Kanchanda, P., Sathonsaowaphak, A., & Cao, H. T. (2007). Sulfate resistance of blended cements containing fly ash and rice husk ash. Construction and Building Materials, 21(6), 1356–1361. doi:10.1016/j.conbuildmat.2005.10.005.

Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161. doi:10.1016/j.jclepro.2012.10.049.

Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489–1498. doi:10.1016/j.cemconres.2004.01.021.

Ahmed, T. I., & Tobbala, D. E. (2022). The role of granite dust in engineered cement composites as a partial replacement of fine aggregate. Innovative Infrastructure Solutions, 7(1), 1-11. doi:10.1007/s41062-021-00699-3.

Loh, S. K., James, S., Ngatiman, M., Cheong, K. Y., Choo, Y. M., & Lim, W. S. (2013). Enhancement of palm oil refinery waste - Spent bleaching earth (SBE) into bio organic fertilizer and their effects on crop biomass growth. Industrial Crops and Products, 49, 775–781. doi:10.1016/j.indcrop.2013.06.016.

Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., & Siripanichgorn, A. (2007). Use of waste ash from palm oil industry in concrete. Waste Management, 27(1), 81–88. doi:10.1016/j.wasman.2005.12.014.

Azmi, W. H., Usri, N. A., Mamat, R., Sharma, K. V., & Noor, M. M. (2017). Force convection heat transfer of Al2O3 nanofluids for different based ratio of water: ethylene glycol mixture. Applied Thermal Engineering, 112, 707-719. doi:10.1016/j.applthermaleng.2016.10.135.

Sridharan, A., & Nagaraj, H. B. (2005). Plastic limit and compaction characteristics of finegrained soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 9(1), 17–22. doi:10.1680/grim.2005.9.1.17.

Viji, V. K., Lissy, K. F., Sobha, C., & Benny, M. A. (2013). Predictions on compaction characteristics of fly ashes using regression analysis and artificial neural network analysis. International Journal of Geotechnical Engineering, 7(3), 282–291. doi:10.1179/1938636213Z.00000000036.

ASTM D 698-12. (2014). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400ft-lbf/ft3 (600kN-m/m3)). ASTM International, Pennsylvania, United States. doi:10.1520/D0698-12.

BS 1377-1:1990. (1990). Methods of test for soils for civil engineering purposes- Part1: General requirements and sample preparation. British Standard, London, United Kingdom.

Mesri, G., & Ajlouni, M. (2007). Engineering Properties of Fibrous Peats. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 850–866. doi:10.1061/(asce)1090-0241(2007)133:7(850).

Bin Zainorabidin, A., binti Saedon, N., Bin Bakar, I., & bt Mohd Seth, N. F. (2015). An investigation of soil volume changes at four dimensional points of peat soil sample in Parit Nipah and Pontian. Applied Mechanics and Materials, 773–774, 1491–1496. doi:10.4028/

Hauashdh, A., Radin Mohamed, R. M. S., Abd Rahman, J., & Jailani, J. (2018). Analysis of leachate from solidified peat soil. MATEC Web of Conferences, 250, 06015. doi:10.1051/matecconf/201825006015.

Zainorabidin, A., & Mohamad, H. M. (2016). A geotechnical exploration of Sabah peat soil: Engineering classifications and field surveys. Electronic Journal of Geotechnical Engineering, 21(20), 6671–6687.

Zainorabidin, A., & Mohamad, H. M. (2016). Preliminary peat surveys in ecoregion delineation of North Borneo: Engineering perspective. Electronic Journal of Geotechnical Engineering, 21(12), 4485–4493.

Andriesse, J. P. (1988). Nature and management of tropical peat soils (No. 59). Food and Agriculture Organization of the United Nations, Rome, Italy.

Sina, K., Bujang, B. H., Arun, P., & Maassoumeh, B. (2011). Effect of peat media on stabilization of peat by traditional binders. International Journal of Physical Sciences, 6(3), 476-481.

van Asselen, S., Erkens, G., Stouthamer, E., Woolderink, H. A., Geeraert, R. E., & Hefting, M. M. (2018). The relative contribution of peat compaction and oxidation to subsidence in built-up areas in the Rhine-Meuse delta, The Netherlands. Science of the Total Environment, 636, 177-191. doi:10.1016/j.scitotenv.2018.04.141.

Huat, B. B. (2006). Deformation and shear strength characteristics of some tropical peat and organic soils. Pertanika Journal of Science & Technology, 14(1-2), 61-74.

Sutejo, Y., Saggaff, A., Rahayu, W., & Hanafiah. (2019). Effect of temperature and heating time variation on characteristics of fibrous peat soils. IOP Conference Series: Materials Science and Engineering, 620, 012038. doi:10.1088/1757-899x/620/1/012038.

Mohd Zambri, N., & Md Ghazaly, Z. (2018). Peat Soil Stabilization using Lime and Cement. E3S Web of Conferences, 34, 1034. doi:10.1051/e3sconf/20183401034.

Boobathiraja, S., Balamurugan, P., Dhansheer, M., & Adhikari, A. (2014). Study on strength of peat soil stabilized with cement and other pozzolanic materials. International Journal of Civil Engineering Research, 5(4), 431-438.

Ahmad, A., Sutanto, M. H., Ahmad, N. R. B., Bujang, M., & Mohamad, M. E. (2021). The implementation of industrial byproduct in Malaysian peat improvement: A sustainable soil stabilization approach. Materials, 14(23). doi:10.3390/ma14237315.

Kassim, N. Q. B., & Yaacob, A. (2017). Microscopic Study of Peat Profiles Using FESEM Coupled with EDX Technique. International Journal of Chemical Engineering and Applications, 8(1), 33–36. doi:10.18178/ijcea.2017.8.1.627.

Kalantari, B., & Huat, B. B. (2009). Effect of fly ash on the strength values of air cured stabilized tropical peat with cement. Electronic Journal of Geotechnical Engineering, 14, 1-14.

Sulaiman, M. S., Mohamad, H. M., & Suhaimi, A. A. (2022). A Study on Linear Shrinkage Behavior of Peat Soil Stabilized with Eco-Processed Pozzolan (EPP). Civil Engineering Journal (Iran), 8(6), 1157–1166. doi:10.28991/CEJ-2022-08-06-05.

Suhaimi, A. A., & Mohamad, H. M. (2021). Settlement behaviour of stabilized peat: an assessment with Eco-Processed Pozzolan (EPP) in modified electro-osmotic triaxial cell. International Journal of GEOMATE, 21(88), 86–96. doi:10.21660/2021.88.j2296.

Full Text: PDF

DOI: 10.28991/CEJ-2023-09-01-07


  • There are currently no refbacks.

Copyright (c) 2023 HABIB MUSA BIN MOHAMAD

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.