A Highly Sustainable Timber-Cork Modular System for Lightweight Temporary Housing
Vol. 8 No. 10 (2022): October
Research Articles
Downloads
Doi: 10.28991/CEJ-2022-08-10-020
Full Text: PDF
Barreca, F., Arcuri, N., Cardinali, G. D., Di Fazio, S., Rollo, A., & Tirella, V. (2022). A Highly Sustainable Timber-Cork Modular System for Lightweight Temporary Housing. Civil Engineering Journal, 8(10), 2336–2352. https://doi.org/10.28991/CEJ-2022-08-10-020
[1] Klochko, A. R. (2022). Visions of the Future of Post-Industrial and Post-Pandemic Housing Architecture. IOP Conference Series: Earth and Environmental Science, 988(4). doi:10.1088/1755-1315/988/4/042077.
[2] Arslan, H. (2007). Re-design, re-use and recycle of temporary houses. Building and Environment, 42(1), 400–406. doi:10.1016/j.buildenv.2005.07.032.
[3] Moreno-Sierra, A., Pieschacón, M., & Khan, A. (2020). The use of recycled plastics for the design of a thermal resilient emergency shelter prototype. International Journal of Disaster Risk Reduction, 50, 101885. doi:10.1016/j.ijdrr.2020.101885.
[4] Radogna, D. (2018). Emergency and tourism in Abruzzo. A temporary house system. AGATHí“N, International Journal of Architecture, Art and Design, 4, 177-186. doi:10.19229/2464-9309/4222018.
[5] UN, United Nations. (2006). Exploring key changes and developments in post-disaster settlement, shelter and housing, 1982–2006: Scoping study to inform the revision of ‘Shelter after Disaster: Guidelines for Assistance. United Nations, Geneva, Switzerland.
[6] Haapio, A., & Viitaniemi, P. (2008). A critical review of building environmental assessment tools. Environmental Impact Assessment Review, 28(7), 469–482. doi:10.1016/j.eiar.2008.01.002.
[7] Gomez-Echeverri, L. (2018). Climate and development: Enhancing impact through stronger linkages in the implementation of the Paris Agreement and the Sustainable Development Goals (SDGs). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 177–186. doi:10.1098/rsta.2016.0444.
[8] Bashawri, A., Garrity, S., & Moodley, K. (2014). An Overview of the Design of Disaster Relief Shelters. Procedia Economics and Finance, 18, 924–931. doi:10.1016/s2212-5671(14)01019-3.
[9] Zafra, R. G., Mayo, J. R. M., Villareal, P. J. M., De Padua, V. M. N., Castillo, M. H. T., Sundo, M. B., & Madlangbayan, M. S. (2021). Structural and thermal performance assessment of shipping container as post-disaster housing in tropical climates. Civil Engineering Journal (Iran), 7(8), 1437–1458. doi:10.28991/cej-2021-03091735.
[10] Li, S., & Deng, K. (2019). Lightweight reconfigurable structure system (LRSS): Rethinking temporary buildings. WIT Transactions on the Built Environment, 183, 101–112. doi:10.2495/ARC180101.
[11] Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. doi:10.1016/j.rser.2013.08.037.
[12] Vilches, A., Garcia-Martinez, A., & Sanchez-Montañes, B. (2017). Life cycle assessment (LCA) of building refurbishment: A literature review. Energy and Buildings, 135, 286–301. doi:10.1016/j.enbuild.2016.11.042.
[13] Alshawawreh, L., Pomponi, F., D'Amico, B., Snaddon, S., & Guthrie, P. (2020). Qualifying the sustainability of novel designs and existing solutions for post-disaster and post-conflict sheltering. Sustainability (Switzerland), 12(3). doi:10.3390/su12030890.
[14] Salvalai, G., Sesana, M. M., Brutti, D., & Imperadori, M. (2020). Design and performance analysis of a lightweight flexible nZEB. Sustainability (Switzerland), 12(15), 1–26,. doi:10.3390/su12155986.
[15] Hosseini, S. M. A., Farahzadi, L., & Pons, O. (2021). Assessing the sustainability index of different post-disaster temporary housing unit configuration types. Journal of Building Engineering, 42(February), 102806. doi:10.1016/j.jobe.2021.102806.
[16] Yang, S., Wi, S., Cho, H. M., Park, J. H., Yun, B. Y., & Kim, S. (2020). Developing energy-efficient temporary houses for sustainable urban regeneration: Manufacturing homes with loess, pearlite, and vermiculite. Sustainable Cities and Society, 61(May), 102287. doi:10.1016/j.scs.2020.102287.
[17] Bovo, M., Giani, N., Barbaresi, A., Mazzocchetti, L., Barbaresi, L., Giorgini, L., Torreggiani, D., & Tassinari, P. (2022). Contribution to thermal and acoustic characterization of corn cob for bio-based building insulation applications. Energy and Buildings, 262, 111994. doi:10.1016/j.enbuild.2022.111994.
[18] Obyn, S., Van Moeseke, G., & Virgo, V. (2015). Thermal performance of shelter modelling: Improvement of temporary structures. Energy and Buildings, 89, 170–182. doi:10.1016/j.enbuild.2014.12.035.
[19] Barreca, F., & Fichera, C. R. (2015). Thermal insulating characteristics of cork agglomerate panels in sustainable food buildings. CEUR Workshop Proceedings, 1498, 358–366.
[20] Skuratov, N. (2010). New lightweight solid wood panels for green building. Proceedings of the International convention of society of wood science and technology and United Nations Economic Commission for Europe”Timber Committee, 11-14 October, 2010, Geneva, Switzerland.
[21] Naji, S., Çelik, O. C., Johnson Alengaram, U., Jumaat, M. Z., & Shamshirband, S. (2014). Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings. Energy and Buildings, 84, 727–739. doi:10.1016/j.enbuild.2014.08.009.
[22] Barreca, F. (2018). Utilization of cork residues for high performance walls in green buildings. Agricultural Engineering International: CIGR Journal, 20(1), 47-55.
[23] Barreca, F., & Praticò, P. (2019). Environmental indoor thermal control of extra virgin olive oil storage room with phase change materials. Journal of Agricultural Engineering, 50(4), 208–214. doi:10.4081/jae.2019.947.
[24] Barreca, F., & Tirella, V. (2017). A self-built shelter in wood and agglomerated cork panels for temporary use in Mediterranean climate areas. Energy and Buildings, 142, 1–7. doi:10.1016/j.enbuild.2017.03.003.
[25] Ni, C., He, M., & Chen, S. (2012). Evaluation of Racking Performance of Wood Portal Frames with Different Wall Configurations and Construction Details. Journal of Structural Engineering, 138(8), 984–994. doi:10.1061/(asce)st.1943-541x.0000537.
[26] Evola, G., & Marletta, L. (2014). The effectiveness of PCM wallboards for the energy refurbishment of lightweight buildings. Energy Procedia, 62, 13–21. doi:10.1016/j.egypro.2014.12.362.
[27] Guralp, A. (2000). Screw pile foundations. WIT Transactions on the Built Environment, 47. doi:10.2495/MRS000191.
[28] Croce, P., Landi, F., Formichi, P., Beconcini, M.L., Puccini, B., Zotti, V. (2022). Non-linear Methods for the Assessment of Seismic Vulnerability of Masonry Historical Buildings. Protection of Historical Constructions. PROHITECH 2021. Lecture Notes in Civil Engineering, 209, Springer, Cham, Switzerland. doi:10.1007/978-3-030-90788-4_51.
[29] Ministry of Infrastructure and Transport. (2018). Update of the 'Technical standards for construction. Available online: https://www.donnegeometra.it/portfolio/nuove-norme-tecniche-delle-costruzioni-2018 (accessed on May 2022).
[30] Porteous, J., & Kermani, A. (2007). Structural Timber Design to Eurocode 5. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470697818.
[31] EN 1998-1. (2004). Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, Belgium.
[32] Casagrande, D., Sinito, E., Izzi, M., Pasetto, G., & Polastri, A. (2021). Structural performance of a hybrid timber wall system for emergency housing facilities. Journal of Building Engineering, 33, 101566. doi:10.1016/j.jobe.2020.101566.
[33] van de Lindt, J. W., Pei, S., Pryor, S. E., Shimizu, H., & Isoda, H. (2010). Experimental Seismic Response of a Full-Scale Six-Story Light-Frame Wood Building. Journal of Structural Engineering, 136(10), 1262–1272. doi:10.1061/(asce)st.1943-541x.0000222.
[34] NTC 2018. (2018). New seismic standards for structural calculation. Available online: https://www.studiopetrillo.com/ ntc2018.html (accessed on May 2022).
[35] EN 1991-1-1. (2002). Eurocode 1: Actions on structures-Part1-1: General actions-Densities, self-weight, imposed loads for buildings. European Committee for Standardization, Brussels, Belgium.
[36] EN 1995-1-1. (2004). Eurocode 5: Design of timber structures. European Committee for Standardization, Brussels, Belgium.
[37] He, X., Chen, Y., Ke, K., Shao, T., & Yam, M. C. H. (2022). Development of a connection equipped with fuse angles for steel moment resisting frames. Engineering Structures, 265. doi:10.1016/j.engstruct.2022.114503.
[38] Doswell, C. A., Brooks, H. E., & Dotzek, N. (2009). On the implementation of the enhanced Fujita scale in the USA. Atmospheric Research, 93(1–3), 554–563. doi:10.1016/j.atmosres.2008.11.003.
[39] Barreca, F., & Praticò, P. (2018). Post-occupancy evaluation of buildings for sustainable agri-food production-A method applied to an olive oil mill. Buildings, 8(7), 83. doi:10.3390/buildings8070083.
[40] Bruno, R., Arcuri, N., & Carpino, C. (2015). The passive house in Mediterranean area: Parametric analysis and dynamic simulation of the thermal behaviour of an innovative prototype. Energy Procedia, 82, 533–539. doi:10.1016/j.egypro.2015.11.866.
[41] Santolini, E., Bovo, M., Barbaresi, A., Torreggiani, D., & Tassinari, P. (2021). Turning agricultural wastes into biomaterials: Assessing the sustainability of scenarios of circular valorization of corn cob in a life-cycle perspective. Applied Sciences (Switzerland), 11(14). doi:10.3390/app11146281.
[42] Gómez, J., Tascón, A., & Ayuga, F. (2018). Systematic layout planning of wineries: the case of Rioja region (Spain). Journal of Agricultural Engineering, 49(1), 34–41. doi:10.4081/jae.2018.778.
[43] Bruno, R., Bevilacqua, P., Rollo, A., Barreca, F., & Arcuri, N. (2022). A Novel Bio-Architectural Temporary Housing Designed for the Mediterranean Area: Theoretical and Experimental Analysis. Energies, 15(9). doi:10.3390/en15093243.
[44] Barbaresi, A., Bovo, M., Santolini, E., Barbaresi, L., Torreggiani, D., & Tassinari, P. (2020). Development of a low-cost movable hot box for a preliminary definition of the thermal conductance of building envelopes. Building and Environment, 180, 107034. doi:10.1016/j.buildenv.2020.107034.
[45] UNI/TS 11300-1:2014. (2014). Energy performance of buildings-Part1: Evaluation of energy need for space heating and cooling. UNI UN MONDO FATTO BENE. (In Italian).
[46] Arcuri, N., Bruno, R., & Bevilacqua, P. (2015). Influence of the optical and geometrical properties of indoor environments for the thermal performances of chilled ceilings. Energy and Buildings, 88, 229–237. doi:10.1016/j.enbuild.2014.12.009.
[47] Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 64, 73–89. doi:10.1016/j.enbuild.2013.04.018.
[48] Kubba, S. (2012). Handbook of Green Building Design and Construction. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/c2009-0-64483-4.
[49] Mattoni, B., Guattari, C., Evangelisti, L., Bisegna, F., Gori, P., & Asdrubali, F. (2018). Critical review and methodological approach to evaluate the differences among international green building rating tools. Renewable and Sustainable Energy Reviews, 82, 950–960. doi:10.1016/j.rser.2017.09.105.
[50] Ameen, R. F. M., Mourshed, M., & Li, H. (2015). A critical review of environmental assessment tools for sustainable urban design. Environmental Impact Assessment Review, 55, 110–125. doi:10.1016/j.eiar.2015.07.006.
[51] Allotey, I. A. (1987). Low-cost test rig for structural engineering tests. Materials and Structures, 20(5), 370–373. doi:10.1007/BF02472584.
[52] Elamin, M. D. E. (2020). Life cycle assessment as a decision-making tool in the design choices of buildings. Masters Thesis, Territorial, Urban, Environmental and Landscape Planning, Polytechnic University of Turin, Turin, Italy.
[53] BS EN 15978:2011. (2012). Sustainability of construction works - Assessment of environmental performance of buildings. Calculation method. British Standard Institute (BSI), London, United Kingdom.
[54] ISO 14044:2006. (2022). Environmental management-Life cycle assessment-Requirements and guidelines. International Organization for Standardization (ISO), Geneva, Switzerland.
[55] EN 15804. (2022). European Standard for the generation of EPD for construction products. BRE Trust, Watford, United Kingdom.
[56] BS EN 15804:2012+A1:2013. (2014). Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products. British Standard Institute (BSI), London, United Kingdom.
[57] Koke, J., Schippmann, A., Shen, J., Zhang, X., Kaufmann, P., & Krause, S. (2021). Strategies of design concepts and energy systems for nearly zero-energy container buildings (NZECBs) in different climates. Buildings, 11(8), 364. doi:10.3390/buildings11080364.
[2] Arslan, H. (2007). Re-design, re-use and recycle of temporary houses. Building and Environment, 42(1), 400–406. doi:10.1016/j.buildenv.2005.07.032.
[3] Moreno-Sierra, A., Pieschacón, M., & Khan, A. (2020). The use of recycled plastics for the design of a thermal resilient emergency shelter prototype. International Journal of Disaster Risk Reduction, 50, 101885. doi:10.1016/j.ijdrr.2020.101885.
[4] Radogna, D. (2018). Emergency and tourism in Abruzzo. A temporary house system. AGATHí“N, International Journal of Architecture, Art and Design, 4, 177-186. doi:10.19229/2464-9309/4222018.
[5] UN, United Nations. (2006). Exploring key changes and developments in post-disaster settlement, shelter and housing, 1982–2006: Scoping study to inform the revision of ‘Shelter after Disaster: Guidelines for Assistance. United Nations, Geneva, Switzerland.
[6] Haapio, A., & Viitaniemi, P. (2008). A critical review of building environmental assessment tools. Environmental Impact Assessment Review, 28(7), 469–482. doi:10.1016/j.eiar.2008.01.002.
[7] Gomez-Echeverri, L. (2018). Climate and development: Enhancing impact through stronger linkages in the implementation of the Paris Agreement and the Sustainable Development Goals (SDGs). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 177–186. doi:10.1098/rsta.2016.0444.
[8] Bashawri, A., Garrity, S., & Moodley, K. (2014). An Overview of the Design of Disaster Relief Shelters. Procedia Economics and Finance, 18, 924–931. doi:10.1016/s2212-5671(14)01019-3.
[9] Zafra, R. G., Mayo, J. R. M., Villareal, P. J. M., De Padua, V. M. N., Castillo, M. H. T., Sundo, M. B., & Madlangbayan, M. S. (2021). Structural and thermal performance assessment of shipping container as post-disaster housing in tropical climates. Civil Engineering Journal (Iran), 7(8), 1437–1458. doi:10.28991/cej-2021-03091735.
[10] Li, S., & Deng, K. (2019). Lightweight reconfigurable structure system (LRSS): Rethinking temporary buildings. WIT Transactions on the Built Environment, 183, 101–112. doi:10.2495/ARC180101.
[11] Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416. doi:10.1016/j.rser.2013.08.037.
[12] Vilches, A., Garcia-Martinez, A., & Sanchez-Montañes, B. (2017). Life cycle assessment (LCA) of building refurbishment: A literature review. Energy and Buildings, 135, 286–301. doi:10.1016/j.enbuild.2016.11.042.
[13] Alshawawreh, L., Pomponi, F., D'Amico, B., Snaddon, S., & Guthrie, P. (2020). Qualifying the sustainability of novel designs and existing solutions for post-disaster and post-conflict sheltering. Sustainability (Switzerland), 12(3). doi:10.3390/su12030890.
[14] Salvalai, G., Sesana, M. M., Brutti, D., & Imperadori, M. (2020). Design and performance analysis of a lightweight flexible nZEB. Sustainability (Switzerland), 12(15), 1–26,. doi:10.3390/su12155986.
[15] Hosseini, S. M. A., Farahzadi, L., & Pons, O. (2021). Assessing the sustainability index of different post-disaster temporary housing unit configuration types. Journal of Building Engineering, 42(February), 102806. doi:10.1016/j.jobe.2021.102806.
[16] Yang, S., Wi, S., Cho, H. M., Park, J. H., Yun, B. Y., & Kim, S. (2020). Developing energy-efficient temporary houses for sustainable urban regeneration: Manufacturing homes with loess, pearlite, and vermiculite. Sustainable Cities and Society, 61(May), 102287. doi:10.1016/j.scs.2020.102287.
[17] Bovo, M., Giani, N., Barbaresi, A., Mazzocchetti, L., Barbaresi, L., Giorgini, L., Torreggiani, D., & Tassinari, P. (2022). Contribution to thermal and acoustic characterization of corn cob for bio-based building insulation applications. Energy and Buildings, 262, 111994. doi:10.1016/j.enbuild.2022.111994.
[18] Obyn, S., Van Moeseke, G., & Virgo, V. (2015). Thermal performance of shelter modelling: Improvement of temporary structures. Energy and Buildings, 89, 170–182. doi:10.1016/j.enbuild.2014.12.035.
[19] Barreca, F., & Fichera, C. R. (2015). Thermal insulating characteristics of cork agglomerate panels in sustainable food buildings. CEUR Workshop Proceedings, 1498, 358–366.
[20] Skuratov, N. (2010). New lightweight solid wood panels for green building. Proceedings of the International convention of society of wood science and technology and United Nations Economic Commission for Europe”Timber Committee, 11-14 October, 2010, Geneva, Switzerland.
[21] Naji, S., Çelik, O. C., Johnson Alengaram, U., Jumaat, M. Z., & Shamshirband, S. (2014). Structure, energy and cost efficiency evaluation of three different lightweight construction systems used in low-rise residential buildings. Energy and Buildings, 84, 727–739. doi:10.1016/j.enbuild.2014.08.009.
[22] Barreca, F. (2018). Utilization of cork residues for high performance walls in green buildings. Agricultural Engineering International: CIGR Journal, 20(1), 47-55.
[23] Barreca, F., & Praticò, P. (2019). Environmental indoor thermal control of extra virgin olive oil storage room with phase change materials. Journal of Agricultural Engineering, 50(4), 208–214. doi:10.4081/jae.2019.947.
[24] Barreca, F., & Tirella, V. (2017). A self-built shelter in wood and agglomerated cork panels for temporary use in Mediterranean climate areas. Energy and Buildings, 142, 1–7. doi:10.1016/j.enbuild.2017.03.003.
[25] Ni, C., He, M., & Chen, S. (2012). Evaluation of Racking Performance of Wood Portal Frames with Different Wall Configurations and Construction Details. Journal of Structural Engineering, 138(8), 984–994. doi:10.1061/(asce)st.1943-541x.0000537.
[26] Evola, G., & Marletta, L. (2014). The effectiveness of PCM wallboards for the energy refurbishment of lightweight buildings. Energy Procedia, 62, 13–21. doi:10.1016/j.egypro.2014.12.362.
[27] Guralp, A. (2000). Screw pile foundations. WIT Transactions on the Built Environment, 47. doi:10.2495/MRS000191.
[28] Croce, P., Landi, F., Formichi, P., Beconcini, M.L., Puccini, B., Zotti, V. (2022). Non-linear Methods for the Assessment of Seismic Vulnerability of Masonry Historical Buildings. Protection of Historical Constructions. PROHITECH 2021. Lecture Notes in Civil Engineering, 209, Springer, Cham, Switzerland. doi:10.1007/978-3-030-90788-4_51.
[29] Ministry of Infrastructure and Transport. (2018). Update of the 'Technical standards for construction. Available online: https://www.donnegeometra.it/portfolio/nuove-norme-tecniche-delle-costruzioni-2018 (accessed on May 2022).
[30] Porteous, J., & Kermani, A. (2007). Structural Timber Design to Eurocode 5. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470697818.
[31] EN 1998-1. (2004). Eurocode 8: Design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings. European Committee for Standardization, Brussels, Belgium.
[32] Casagrande, D., Sinito, E., Izzi, M., Pasetto, G., & Polastri, A. (2021). Structural performance of a hybrid timber wall system for emergency housing facilities. Journal of Building Engineering, 33, 101566. doi:10.1016/j.jobe.2020.101566.
[33] van de Lindt, J. W., Pei, S., Pryor, S. E., Shimizu, H., & Isoda, H. (2010). Experimental Seismic Response of a Full-Scale Six-Story Light-Frame Wood Building. Journal of Structural Engineering, 136(10), 1262–1272. doi:10.1061/(asce)st.1943-541x.0000222.
[34] NTC 2018. (2018). New seismic standards for structural calculation. Available online: https://www.studiopetrillo.com/ ntc2018.html (accessed on May 2022).
[35] EN 1991-1-1. (2002). Eurocode 1: Actions on structures-Part1-1: General actions-Densities, self-weight, imposed loads for buildings. European Committee for Standardization, Brussels, Belgium.
[36] EN 1995-1-1. (2004). Eurocode 5: Design of timber structures. European Committee for Standardization, Brussels, Belgium.
[37] He, X., Chen, Y., Ke, K., Shao, T., & Yam, M. C. H. (2022). Development of a connection equipped with fuse angles for steel moment resisting frames. Engineering Structures, 265. doi:10.1016/j.engstruct.2022.114503.
[38] Doswell, C. A., Brooks, H. E., & Dotzek, N. (2009). On the implementation of the enhanced Fujita scale in the USA. Atmospheric Research, 93(1–3), 554–563. doi:10.1016/j.atmosres.2008.11.003.
[39] Barreca, F., & Praticò, P. (2018). Post-occupancy evaluation of buildings for sustainable agri-food production-A method applied to an olive oil mill. Buildings, 8(7), 83. doi:10.3390/buildings8070083.
[40] Bruno, R., Arcuri, N., & Carpino, C. (2015). The passive house in Mediterranean area: Parametric analysis and dynamic simulation of the thermal behaviour of an innovative prototype. Energy Procedia, 82, 533–539. doi:10.1016/j.egypro.2015.11.866.
[41] Santolini, E., Bovo, M., Barbaresi, A., Torreggiani, D., & Tassinari, P. (2021). Turning agricultural wastes into biomaterials: Assessing the sustainability of scenarios of circular valorization of corn cob in a life-cycle perspective. Applied Sciences (Switzerland), 11(14). doi:10.3390/app11146281.
[42] Gómez, J., Tascón, A., & Ayuga, F. (2018). Systematic layout planning of wineries: the case of Rioja region (Spain). Journal of Agricultural Engineering, 49(1), 34–41. doi:10.4081/jae.2018.778.
[43] Bruno, R., Bevilacqua, P., Rollo, A., Barreca, F., & Arcuri, N. (2022). A Novel Bio-Architectural Temporary Housing Designed for the Mediterranean Area: Theoretical and Experimental Analysis. Energies, 15(9). doi:10.3390/en15093243.
[44] Barbaresi, A., Bovo, M., Santolini, E., Barbaresi, L., Torreggiani, D., & Tassinari, P. (2020). Development of a low-cost movable hot box for a preliminary definition of the thermal conductance of building envelopes. Building and Environment, 180, 107034. doi:10.1016/j.buildenv.2020.107034.
[45] UNI/TS 11300-1:2014. (2014). Energy performance of buildings-Part1: Evaluation of energy need for space heating and cooling. UNI UN MONDO FATTO BENE. (In Italian).
[46] Arcuri, N., Bruno, R., & Bevilacqua, P. (2015). Influence of the optical and geometrical properties of indoor environments for the thermal performances of chilled ceilings. Energy and Buildings, 88, 229–237. doi:10.1016/j.enbuild.2014.12.009.
[47] Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle analysis in the construction sector: Guiding the optimization of conventional Italian buildings. Energy and Buildings, 64, 73–89. doi:10.1016/j.enbuild.2013.04.018.
[48] Kubba, S. (2012). Handbook of Green Building Design and Construction. Butterworth-Heinemann, Oxford, United Kingdom. doi:10.1016/c2009-0-64483-4.
[49] Mattoni, B., Guattari, C., Evangelisti, L., Bisegna, F., Gori, P., & Asdrubali, F. (2018). Critical review and methodological approach to evaluate the differences among international green building rating tools. Renewable and Sustainable Energy Reviews, 82, 950–960. doi:10.1016/j.rser.2017.09.105.
[50] Ameen, R. F. M., Mourshed, M., & Li, H. (2015). A critical review of environmental assessment tools for sustainable urban design. Environmental Impact Assessment Review, 55, 110–125. doi:10.1016/j.eiar.2015.07.006.
[51] Allotey, I. A. (1987). Low-cost test rig for structural engineering tests. Materials and Structures, 20(5), 370–373. doi:10.1007/BF02472584.
[52] Elamin, M. D. E. (2020). Life cycle assessment as a decision-making tool in the design choices of buildings. Masters Thesis, Territorial, Urban, Environmental and Landscape Planning, Polytechnic University of Turin, Turin, Italy.
[53] BS EN 15978:2011. (2012). Sustainability of construction works - Assessment of environmental performance of buildings. Calculation method. British Standard Institute (BSI), London, United Kingdom.
[54] ISO 14044:2006. (2022). Environmental management-Life cycle assessment-Requirements and guidelines. International Organization for Standardization (ISO), Geneva, Switzerland.
[55] EN 15804. (2022). European Standard for the generation of EPD for construction products. BRE Trust, Watford, United Kingdom.
[56] BS EN 15804:2012+A1:2013. (2014). Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products. British Standard Institute (BSI), London, United Kingdom.
[57] Koke, J., Schippmann, A., Shen, J., Zhang, X., Kaufmann, P., & Krause, S. (2021). Strategies of design concepts and energy systems for nearly zero-energy container buildings (NZECBs) in different climates. Buildings, 11(8), 364. doi:10.3390/buildings11080364.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
